

Architecture
Definition
Guide

Architecture Definition Guide

ii

Copyright © 1998-2024 Zuken Vitech Inc. All rights reserved.

No part of this document may be reproduced in any form, including, but not limited to, photocopying,
language translation, or storage in a data retrieval system, without Vitech’s prior written consent.

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in the applicable
GENESYS End-User License Agreement and in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause at DFARS 252.277-7013 or subparagraphs (c)(1) and (2) of the Commercial
Computer Software - Restricted Rights at 48 CFR 52.227-19, as applicable, or their equivalents, as may
be amended from time to time.

Zuken Vitech Inc.
2270 Kraft Drive, Suite 1600
Blacksburg, Virginia 24060

+1 540 951 3322 | Fax: +1 540 951 8222
www.vitechcorp.com

Customer Support:

+1 540 951 3999 | support@vitechcorp.com

is a trademark of Zuken Vitech Inc. and refers to all products in the GENESYS
software product family.

The license and/or entitlement management portions of GENESYS are based upon one or more of the
following copyrights: Sentinel® EMSaaS, Sentinel® LDK. Copyright © 2024 Thales. All rights reserved.

Sentinel® is a registered trademark of Thales. Other product names mentioned herein are used for
identification purposes only and are trademarks of their respective companies.

Publication Date: December 2024

https://www.vitechcorp.com/
mailto:support@vitechcorp.com

Architecture Definition Guide

iii

TABLE OF CONTENTS

Preface ... vi
1. Architecture Concepts .. 1

1.1 Operational and System Architecture Domain Relationships.. 2
2. Operational Concept Capture ... 3

2.1 Define Architecture .. 3
2.2 Capture Source Material .. 4
2.3 Identify Organizations .. 7
2.4 Define Operational Boundary .. 8
2.5 Classification .. 9

3. Operational Activity Analysis .. 10
3.1 Operational Activity View ... 10
3.2 State View .. 13

4. Operational Architecture Synthesis .. 16
4.1 Assign OperationalActivities to Next Level of Performers ... 16
4.2 Refine External Needline Definitions ... 17
4.3 Derive or Refine Internal Needlines ... 18

5. Operational Viewpoint Validation Using the Simulator ... 20
6. Operational Architecture Considerations ... 20

6.1 Performance Requirements ... 20
6.2 Services Development ... 20
6.3 Requirements Development .. 22
6.4 Traceability from Operational Architecture .. 23

7. Program Management Aspects .. 25
7.1 Program/Project Basics ... 25
7.2 Program Management Activity View .. 27

8. Documentation—DoDAF v2.02 Viewpoints ... 29

Architecture Definition Guide

iv

LIST OF FIGURES

Figure 1 MBSE Activities .. vii
Figure 2 Capability Architecture Development Schema – Key Classes and Relationships of the Schema 1
Figure 3 Capability Architecture Development Schema – Relationship between Operational, System, and

Program Management Domains. ... 2
Figure 4 Architecture Definition ... 3
Figure 5 Source Material ... 5
Figure 6 Organizations .. 7
Figure 7 Operational Boundary ... 8
Figure 8 Classification ... 9
Figure 9 Operational Activity View .. 12
Figure 10 State View ... 14
Figure 11 Performer Hierarchy and OperationalActivity Assignment ... 17
Figure 12 External Needline Definition ... 18
Figure 13 Internal Needline Definitions ... 19
Figure 14 Performance Requirements .. 20
Figure 15 Services .. 21
Figure 16 Requirements Development ... 22
Figure 17 Operational to Systems Traceability ... 23
Figure 18 Program Management Basics .. 26
Figure 19 Program Activity View ... 28

 LIST OF TABLES

Table 1 Architecture Definition .. 3
Table 2 Source Material .. 5
Table 3 Organizations ... 8
Table 4 Operational Boundary .. 9
Table 5 Classification .. 10
Table 6 Operational Activity View ... 12
Table 7 State View .. 14
Table 8 Performer Hierarchy and OperationalActivity Assignment .. 17
Table 9 External Needline Definition ... 18
Table 10 Internal Needline Definitions .. 19
Table 11 Performance Requirements ... 20
Table 12 Services ... 21
Table 13 Requirements Development .. 23
Table 14 Operational to Systems Traceability .. 24
Table 15 Program Management Basics .. 26
Table 16 Program Activity View .. 28
Table 17 DODAF v2.02 Viewpoint Reports .. 29

Architecture Definition Guide

v

CUSTOMER RESOURCE OPTIONS

Supporting users throughout their entire journey of learning model-based systems engineering (MBSE) is
central to Vitech’s mission. For users looking for additional resources outside of this document, please refer
to the links below. Alternatively, all links may be found at www.vitechcorp.com/online-resources/.

Webinars

Immense, on-demand library of
webinar recordings, including
systems engineering industry
and tool-specific content.

Screencasts

Short videos to guide users
through installation and usage of
GENESYS.

A Primer for Model-Based

Systems Engineering

Our free eBook and our most
popular resource for new and
experienced practitioners alike.

Help Files

Searchable online access to
GENESYS help files.

Technical Papers

Library of technical and white
papers for download, authored
by Vitech systems engineers.

Technical Support

Frequently Asked Questions
(FAQ), support-ticket web form,
and information regarding email,
phone, and chat support options.

https://www.vitechcorp.com/online-resources/
https://www.vitechcorp.com/webinar-videos-on-demand/
https://www.vitechcorp.com/genesys-screencasts-on-demand/
https://www.vitechcorp.com/mbse-primer/
https://www.vitechcorp.com/mbse-primer/
https://www.vitechcorp.com/resources/GENESYS/onlinehelp/desktop/
https://www.vitechcorp.com/technical-papers/
https://www.vitechcorp.com/technical-support/
http://www.vitechcorp.com/webinars
http://www.vitechcorp.com/screencasts
http://www.vitechcorp.com/mbseprimer
http://www.vitechcorp.com/resources/GENESYS/onlinehelp/desktop/
http://www.vitechcorp.com/technicalpapers
http://www.vitechcorp.com/MySupport/support/default.aspx

Architecture Definition Guide

vi

PREFACE
This Architecture Definition Guide (ADG) provides a structured approach for populating a GENESYS™
software project with operational architectural information and producing information about the architecture
following the Department of Defense Architecture Framework (DoDAF) requirements for viewpoint
generation using the reports provided with GENESYS. For detailed information about DoDAF, refer to the
Department of Defense Architecture Framework Version 2.02, 28 May 2010 (Volume 1, Volume 2, and
Volume 3). This guide is written as a supplement to the GENESYS System Definition Guide (SDG).

An operational architecture contains operational entities, system entities, and program management
entities, all of which must be considered in operational architecture development.1 This ADG presents the
activities required to capture and develop an operational architecture. Operational viewpoints are
developed using model-based systems engineering (MBSE) principles, which apply equally well to
architecture development and the engineering activities. Integration of the operational viewpoints and the
system viewpoints occur through the MBSE model as captured in the GENESYS repository. These
architectural developmental activities may be expressed in terms of systems engineering domain activities
without loss of specificity or generality. The systems engineering domain activities consist of
operations/requirements analysis, functional analysis, physical architecture synthesis, and design
verification and validation. An overview of the MBSE process is portrayed below for reference. At all stages
of architectural development, GENESYS can produce documentation for the purpose of presentation,
review, and analysis of the architecture as well as integration and comparison with other architectures. The
DoDAF v2.02 viewpoints become available as a consequence of applying MBSE to a specific operational
architecture.

This guide describes each architectural development activity and the GENESYS schema classes used to
capture the associated information along with a schema diagram and table, identifying the schema classes
used when performing this activity. Following the engineering activity discussion, the associated attributes
and relationships are also presented. In addressing each activity, attention is given to populating the
repository in a manner that facilitates the production of DoDAF v2.02 viewpoints using the reports provided
with GENESYS.

This guide augments the SDG and the MBSE with GENESYS training course. The approach used here is
generic and is not exhaustive of all cases and situations. This approach is written in the context of
developing an operational definition before addressing the system definition. The programmatic aspects
will vary depending upon the state of the architecture, whether multiple architectures are being managed,
etc. When working with “as-is” architectures, the activities may be reordered to best capture the existing
as-is architecture.

The graphics used have the classes color coded so that the user can
see at a glance if the class is a requirement element in the problem
domain, a functional element or physical element in the solution
domain, an interface element characterizing an exchange, a
verification element to demonstrate the suitability of the solution
architecture, or a broader concept.

1 Enterprise architectures follow these same principles; however, enterprise architectures are not specifically addressed
in this architecture definition guide.

Architecture Definition Guide

vii

Figure 1 MBSE Activities

The following additional resources are available for use with this guide:

• For details on generating DoDAF v2.02 viewpoints, the reader is referred to the DoDAF
Viewpoints Definition help document provided in the GENESYS Documentation folder.

Architecture Definition Guide

viii

THIS PAGE INTENTIONALLY BLANK

Architecture Definition Guide

1

1. ARCHITECTURE CONCEPTS
As portrayed in Figure 2, the DoDAF v2.0 schema is organized to provide both an Operational Architecture
Domain and a System Architecture Domain. The Operational Architecture Domain captures originating
concepts, capabilities, and through supporting operational analysis, exposes requirements leading to, and
implemented in, the System Architecture Domain.

Figure 2 Capability Architecture Development Schema –

Key Classes and Relationships of the Schema

As portrayed in Figure 3, the schema is extended to provide integration with the Program Management
Domain. The Program Management Domain addresses the programmatic aspects of the
operational/system architectures to assist in managing project and program efforts as well as finding
commonality, duplicative, and missing capabilities among other architectures managed by a project office.
These aspects help an executive/manager address duplication, misappropriation of scarce resources, and
the timeliness of the delivered capabilities to the business enterprise.

Architecture Definition Guide

2

Figure 3 Capability Architecture Development Schema – Relationship between

Operational, System, and Program Management Domains.

This ADG provides guidance into structuring the entities, attributes, and relationships that implement the
Operational Architecture Domain and Program Management Domain for a project. Similarly, the SDG
provides guidance into structuring the entities, attributes, and relationships that implement the System
Architecture Domain.

1.1 Operational and System Architecture Domain Relationships
The Operational Architecture Domain provides the necessary classes, attributes, and relationships to
capture the foundational concepts, guidance, and the subsequent operational analyses to support defining
the interrelationships among architectures and systems along with documenting the source requirements
for a system (or systems) of interest. The architecture entity which spans the two domains is specified in
Section 2.1 Define Architecture and is composed of Performer (of type: Operational Architecture) and
Component (of type: Family of Systems, System Architecture, or System of Systems) entities.

Within the Operational Architecture Domain, the Performer (type: Operational Architecture) is part of the
operational context which also includes the Performer entities that represent the external aspects of the
operational domain. See Section 2.4 Define Operational Boundary for details on defining the operational
boundary.

Similarly, the System Architecture Domain includes the Component entity (of type: Family of Systems,
System Architecture, or System of Systems) which represents the system(s) of interest. This entity forms
part of the system context, which includes the Component entities representing the external aspects of the
system domain. See GENESYS System Definition Guide, Section 1.3, Define System Boundary for details
on defining the system boundary.

Architecture Definition Guide

3

2. OPERATIONAL CONCEPT CAPTURE
This section is written assuming that the customer or end-user has provided a Concept of Operations
(CONOPS) or an operational capabilities or operational requirements document. If that is not the case, it is
then assumed that the systems/architectural engineering team will start with the task of collecting all
stakeholder needs and transforming them into the required operational information. The end result of this
effort will be a collection of architecture capabilities or high-level requirements that are treated as originating
operational requirements and/or architectural guidance information (See Section 2.2 Capture Source
Material).

2.1 Define Architecture
Identify the architecture. Architectures exist for the purpose of achieving a well-defined system or more
broadly for the enterprise, an integrated set of systems of systems (as defined in both the operational and
system domains) for a specific time frame or time frames. The Architecture class is used to identify an
architecture and its time frame. Each architecture is composed of an operational architecture and a systems
architecture. Performers in the operational architecture are represented in GENESYS using the Performer
class. Physical entities, including collections of systems, interfacing systems, and entities within the
systems architecture, are represented in GENESYS using the Component class. A Performer or
Component Type attribute designates what the entity represents (in this case an operational architecture
for a Performer and systems architecture, system of systems, or family of systems for a Component). The
Type attribute may indicate the role of the entity or its relative position within the performer hierarchy.

Figure 4 Architecture Definition2

Table 1 Architecture Definition

Entity Class Attributes Relations Target Classes
Architecture Description

Number
Purpose
Scope
Time Frame3

composed of
(composes)

Component
Performer

achieves
(achieved by)

Mission

Component
(Type = Family of
Systems, Systems

See SDG
Type: Family of
Systems, System

composes
(composed of)

Architecture

2 The relations presented in this figure and the following are not exhaustive but seek to show the primary relations for
the topic area.
3 It is recommended that the Architecture for each distinct time frame be captured in separate GENESYS projects.

Architecture Definition Guide

4

Table 1 Architecture Definition

Entity Class Attributes Relations Target Classes
Architecture, System of
Systems)

Architecture, or System
of Systems

Mission Description
Number

achieved by
(achieves)

Architecture

Performer
(Type = Operational
Architecture)

Abbreviation
Cost
Description
Doc. PUID
Latitude
Location4
Longitude
Number
Operations
Purpose
Receptions
Values

composes
(composed of)

Architecture

2.2 Capture Source Material
Capturing source material involves the creation of the following entries in the repository depending on the
information provided or needed:

• Capability entity for each source capability statement5
• Document entity for each source document
• Mission entity for each pertinent mission area or description
• OperationalTask entity for each operational task from a source such as the Universal Joint Task

List (UJTL) or the Mission Essential Task List (METL)6
• Requirement entity for each source requirement7
• ExternalFile entity for each source guidance, requirement, mission, or operational task-related

table or graphic
• DefinedTerm entity for each pertinent acronym or special term in the source documents

As part of the process of capturing source material, the following should be done:

 Place any tables and graphics in separate files and reference them in the project repository using
ExternalFile entities where each entity augments the subject entity. The included reports will
automatically include these external tables and graphics in the output immediately following the
entity Description and make entries in the List of Figures and List of Tables, as appropriate. In
order to properly number and label the tables and graphics for inclusion in the output, only a
single graphic or table should appear in each ExternalFile.

 Acronyms and/or special terms appearing in the source document should be captured in the
repository as DefinedTerms. For an acronym or abbreviation, the acronym is entered into the
Acronym attribute and what it stands for is entered as the name of the entity. For a special term,

4 The Location attribute provides a means of specifying physical and logical locations (addresses) in conjunction with
physical latitude and longitude or independent of latitude and longitude.
5 A capability Requirement is distinguished from a Capability and is placed in the Requirement class with the Type
attribute set to “Capability.”
6 The OperationalTask class is only used in those instances where traceability from a source such as the UJTL or
METL is required. These tasks are specified, not derived.
7 Examples are architecture and operational constraints, task performance characterization, and guidance derived.

Architecture Definition Guide

5

the term is the name of the entity, and its definition is entered into the Description attribute. By
filling in both the Acronym and Description attributes, appropriate entries will appear in both the
acronym and glossary sections of the reports.

Entities from source documents. The entry of source entities into a GENESYS project is accomplished
by either entering the data into GENESYS manually or by opening the originating document and using a
series of copy and paste commands to copy items out of the original document and pasting the information
into GENESYS.

Figure 5 Source Material

Table 2 Source Material

Entity Class Attributes Relations Target Classes
Architecture See Section 2.1 achieves (achieved by) Mission

assigned to
(responsible for)

Organization

augmented by
(augments)

ExternalFile

composed of
(composes)

Component
Performer

documented by
(documents)

Document

implemented by
(implements)

ProgramElement

specified by
(specifies)

Capability
Requirement

Capability Benefit
Description
Doc. PUID
Key Performance

Parameter
Origin
Paragraph Number
Paragraph Title
Rationale

augmented by
(augments)

ExternalFile

basis of (based on) OperationalActivity
documented by
(documents)

Document

implemented by
(implements)

Requirement

refined by (refines) Capability

Architecture Definition Guide

6

Table 2 Source Material

Entity Class Attributes Relations Target Classes
specified by (specifies) Requirement
specifies (specified by) Architecture

Needline
OperationalItem
Performer
State

supplied by (supplies) ProgramElement
DefinedTerm Acronym

Description
used in (uses) Document

Document CDRL Number
Description
Document Date
Document Number
Govt. Category
External File Path
Non-Govt. Category
Number
Revision Number
Type

documents
(documented by)8

Architecture
Capability
Mission
Needline
OperationalActivity
OperationalItem
OperationalTask
Performer
Requirement
State

uses (used in) DefinedTerm

ExternalFile Description
External File Path
Number
Page Orientation
Title
Type

augments
(augmented by)9

Architecture
Capability
Event
Mission
Mode
Needline
OperationalActivity
OperationalItem
OperationalTask
Performer
Requirement
State
Transition
UseCase

Mission Description
Number

achieved by
(achieves)

Architecture
OperationalActivity
OperationalTask

assigned to
(responsible for)

Organization

augmented by
(augments)

ExternalFile

8 Only the top-level Mission, OperationalTask, and Requirement entities need to be documented by the source
Document.
9 The Position attribute of this relationship should be set to control the order in which multiple external files are appended
to the entity's Description attribute when it is output in a report.

Architecture Definition Guide

7

Table 2 Source Material

Entity Class Attributes Relations Target Classes
documented by
(documents)

Document

includes (included in) Mission
OperationalTask Description

Number
achieves (achieved by) Mission
augmented by
(augments)

ExternalFile

documented by
(documents)

Document

includes (included in) OperationalTask

Requirement Description
Doc. PUID
Key Performance

Parameter
Incentive Performance

Parameter10
Number
Origin: Operational
Paragraph Number
Paragraph Title
Rationale
Weight Factor

augmented by
(augments)

ExternalFile

documented by
(documents)

Document

refined by (refines) Requirement

2.3 Identify Organizations
Based on the source documents, identify the organizations that are key players in the architecture using
entities in the Organization class. Capture the command structure as well as the coordination relations
among these organizations.

Figure 6 Organizations

10 This parameter identifies the performance requirement or other requirement incentivized on a particular contract.

Architecture Definition Guide

8

Table 3 Organizations

Entity Class Attributes Relations Target Classes
Organization Abbreviation

Description
Latitude
Location
Longitude
Number
Role

coordinates with
(coordinated with)

Organization

includes (included in) Organization

responsible for
(assigned to)

Architecture
OperationalActivity
Mission
ProgramActivity
ProgramElement
Risk

2.4 Define Operational Boundary
Based on an examination of the source, identify the operational boundary and context. To define the
boundary, identify each external operational external element with which the architecture must interface.
An external operational element (hereafter referred to as an external) is represented as a Performer and
may identify the operational environment. Create a Performer entity representing the context and
decompose it into the operational architecture and its externals using the built from relation. Set the Type
attribute for each Performer.

To complete the operational boundary definition, identify all the exchanges between the architecture’s
performers and each external by creating entities of the Needline class. Defining a Needline entity
establishes that the architecture interacts with an external. Typically, there will be only one Needline
between the architecture’s performers and each external performer.

Figure 7 Operational Boundary

Architecture Definition Guide

9

Table 4 Operational Boundary

Entity Class Attributes Relations Target Classes
Performer

(Type: Context)
See Section 2.1 built from

(built in)
Performer

(Type: Operational
Architecture and
External)

Performer
(Type: External)

See Section 2.1 built in (built from) Performer
connected to
(connects to)

Needline

Performer
(Type: Operational

Architecture)

See Section 2.1 built in
(built from)

Performer
(Type: Context)

connected to
(connects to)

Needline

Needline Description
Doc. PUID
Number

connects to
(connected to)

Component
(Type: External and

Operational
Architecture)

Suggestion: Create a folder for the context and externals in order to separate them from the evolving
performer hierarchy. Typically, the context and externals are given a different numbering scheme than the
entities in the performer hierarchy in order to differentiate them in GENESYS views such as the Physical
Block Diagram and Hierarchy diagrams.

2.5 Classification
Some architectures must address the classification of objects. The Classification class serves to associate
classification level and other characteristics, such as Dissemination Control with, potentially, all entities in
the repository.

Figure 8 Classification

Architecture Definition Guide

10

Table 5 Classification

Entity Class Attributes Relationships Target Classes
Classification

Description
Number
Classification Category
Dissemination Control
Releasability
Security Level
Short Label

classifies
(classified by)

DefinedTerm
Document
ExternalFile
SupplementedElement
Text

3. OPERATIONAL ACTIVITY ANALYSIS
Given the need to satisfy an operational mission(s) within the context of a CONOPS and/or an operational
requirements document, the systems engineering/architecture team must derive the operational
architecture’s necessary operational behavior to accomplish the mission or missions. This is essentially a
discovery process, working with operational activities to derive, define, or capture key capabilities. Finalized
capabilities are integrated to become the integrated behavioral view for the architecture.

3.1 Operational Activity View
Capabilities11 form the foundation of an operational architecture. A capability is defined as the ability to
achieve a Desired Effect under specified [performance] standards and conditions through combinations of
ways and means [activities and resources] to perform a set of activities.

The above definition self-interprets “ways and means” as “activities and resources.” In MBSE, “ways” are
behaviorally interpreted, i.e., Functions, OperationalActivities, etc. “Resources” have a two-fold
interpretation. The DoDAF literature predominately sees “resources” as inputs and outputs of Functions
and OperationalActivities. Hence, “resources” are seen primarily as Items and OperationalItems.

Another usage of “resource” sees it as a necessary object for a behavioral entity to execute, as expected,
in a dynamic environment. To illustrate this concept, consider a maintenance action where the function is
to transform an inoperative component into a properly functioning component. The functional transform is
“repair,” where the input is a non-functioning component, and the output is a functioning component. An
input would obviously be a non-functioning component, and an output would obviously be a functioning
component. However, notice this “repair” function needs a set of spare parts and other material or non-
material to enable the repair function to happen. Lack of spare components causes the repair function to
lengthen in its execution.

The language of DoDAF tends to treat these spare components also as Items and OperationalItems;
however, treating spare components, in this sense, also modifies the functional transform too. It introduces
the functionality to acquire, manage, and use these spare components, which now introduces a distraction
at best, or complexity in representing behavior. A logical equivocation occurs unless the function definition
explicitly changes. The “repair” function must conceptually become “repair, acquire, manage, and use spare
components.” The function becomes more complex and distracts from understanding and representing
what the core functionality of the component is—it tends to make behavioral views harder to develop. To
counter this tendency, MBSE offers the concept of a Resource—a resource in a different sense than used
in the DoDAF literature. Here a Resource may be used to affect execution behavior to better understand
the effects of resource limitations on the overall system performance.

11 The usage of the term Capability is as described in the DoD Architecture Framework, Version 2.02, 28 May 2009. In
DoD-oriented models, Capabilities refer to operationally oriented scenarios and threads refer to system-oriented
scenarios.

Architecture Definition Guide

11

Capabilities,12 in general, are the starting point for defining operational scenarios. These scenarios consist
of a sequence of OperationalActivities needed to satisfy the Capability. Each scenario of an
OperationalActivity sequence begins with an external stimulus and each scenario ends with the provision
of an external stimulus.13 These scenarios consist of a sequence of operational activities needed to respond
to an external stimulus or to provide an external stimulus. Capabilities are the basis of
OperationalActivities which are executable behavior entities. Each OperationalActivity is allocated to
an entity in the Performer class and has its Behavior Type set to “Capability.” The integrated operational
behavior is developed from integrating two or more Capabilities, expressed as a sequence of
OperationalActivities into a single behavior view that fully represents the behavior required by a
Performer. The Behavior Type attribute for the Performer entity that contains the integrated behavior is
set to “Integrated (Root).” Traceability between Capabilities and the integrated operational behavior view
is established through the basis of relation. Logical groupings (taxonomy) of Capabilities may be
established through the categorized by relation with entities within the class Category. The context-level
OperationalActivity is allocated to the context-level Performer (of Type Context) with the Behavior Type
set to “Integrated (Root).”

OperationalActivity Inputs and Outputs. Each OperationalActivity within a behavioral view will have
input and output OperationalItem entities identified. These OperationalItem entities are associated with
OperationalActivities using the relations: input to / inputs and output from / outputs. As with
OperationalActivities, OperationalItems should be aggregated to simplify presentation.

OperationalActivity Assignment. In conjunction with Operational Architecture Synthesis (See Section
2.1), for each level of Performers, OperationalActivities in the integrated behavior are decomposed until
they can be uniquely assigned to the next level of Performer using the allocated to relation. This not only
establishes the organization or role that performs the activity, but it also allows the systems
engineering/architecture team to assess the impact of Performer losses or failures on both Mission and
OperationalActivities, thereby, making it easier for the systems engineering/architecture team to design
countermeasures to mitigate operational impacts of Performer loss or failure.

OperationalActivity Traceability. OperationalActivity traceability from an appropriate Mission entity (or
OperationalTask if required) is established using the achieves relation. Establishing this relationship
enables one to easily assess what capabilities and behavior are impacted by a Mission change, as well as
answering the converse question of what Missions are impacted by a capability change or failure.

OperationalActivity traceability from an appropriate Requirement occurs in two senses. These relations
are the specified by and the based on relations. The specified by relation identifies constraint or
performance requirements that the OperationalActivity must satisfy. The based on relation is used for all
other requirements that apply to the OperationalActivity.

Note: When developing behavior, a root OperationalActivity may be established for any Performer and
the behavior diagram, resulting from integrating the capability-based OperationalActivities, defines the
full behavior of the Performer from the Performer's perspective, which satisfies both the Performer's
external observables and its allocated Capabilities.

12 There may be one or more capability Requirement establishing the programmatic need and timeframe when the
capability is needed. Capability Requirements are captured in the Requirement class of Type: “Capability.” In turn,
this capability Requirement specifies a capability in the Capability class.
13 Sometimes the external stimulus is not provided upon output because the behavior is internally satisfied within the
Component.

Architecture Definition Guide

12

Figure 9 Operational Activity View

Table 6 Operational Activity View

Entity Class Attributes Relations Target Classes
Capability See Section 2.2 based on (basis of) OperationalActivity
Mission See Section 2.2 achieved by (achieves) OperationalActivity
Performer

(Type: Operational
Architecture)

See Section 2.1 performs (allocated to)

OperationalActivity
(Behavior Type:

Capability or
Integrated (Root)

OperationalActivity
(Behavior Type:

Capability or
Integrated (Root))14

BeginLogic
Description
Doc. PUID
Duration
EndLogic
ExitLogic
Number
Timeout
Title

achieves (achieved by) Mission
OperationalTask

based on (basis of) Capability
OperationalActivity
Requirement

basis of (based on) OperationalActivity

decomposed by
(decomposes)

OperationalActivity

elaborates
(elaborated by)

UseCase

inputs (input to) OperationalItem
outputs (output from) OperationalItem
allocated to (performs)

Performer

14 A Performer could have multiple OperationalActivity targets with Behavior Type "Capability" but should have only
one OperationalActivity with Behavior Type "Integrated (Root)."

Architecture Definition Guide

13

Table 6 Operational Activity View

Entity Class Attributes Relations Target Classes
results in
(result of)

Capability
Requirement

specified by (specifies) Requirement
OperationalItem Accuracy

Description
Doc. PUID
Number
Priority
Timeliness
Type

decomposed by
(decomposes)

OperationalItem

implemented by
(implements)

Item

input to (inputs) OperationalActivity
output from (outputs) OperationalActivity
specified by (specifies) Requirement
transferred by (transfers) Needline

OperationalTask See Section 2.2 achieved by (achieves) OperationalActivity
achieves (achieved by) Mission

Requirement See Section 2.2 basis of (based on) OperationalActivity
specifies
(specified by)

Architecture
Capability
OperationalActivity
OperationalItem
Performer

UseCase Alternate Flow
Description
Number
Preconditions
Primary Flow
Postconditions

augmented by
(augments)

ExternalFile

describes
(described by)

Performer

elaborated by
(elaborates)

OperationalActivity

elicits (elicited by) Requirement
extended by (extends) UseCase

generalization of
(kind of)

UseCase

included in (includes) UseCase
involves
(participates in)

Performer

3.2 State View
A State viewpoint offers an alternative approach for expressing a Component’s behavior, the identification
of relative functional timing of a Component or state machine. A State identifies a non-overlapping (i.e.,
one State does not share its behavior with another State) operational and possibly repetitive conditions
occurring during component’s operating lifetime. In other words, the set of States exhibited by a
Component are complete for expressing a Component’s behavior and its logical timing (not absolute
timing). Alternative State representations are possible, but each set definition must be complete and non-
overlapping. Each State has a Behavior Type attribute which indicates if it is the “Integrated (Root)” view of
the behavior or simply a piece of the behavior (Standard).

Architecture Definition Guide

14

A State may exist either because it is documented by a Document or specified by a Requirement. An
ExternalFile or Text entity may also augment a State for the purpose of further enhancing the meaning or
representation of the State.

A given State may be a member of a particular subset of States. The collection of such States is
represented as a Mode; this is shown as the State encompassed by a Mode. A Performer exhibits a State,
and also contains a Mode.

Each State incorporates one or more OperationalActivities which specifies behaviors that occur during
the execution of the State. Associated with the incorporates relation are two relationship attributes of type
boolean – Entry and Exit. If “Entry” is true, this behavior is performed upon entry into the State. If “Exit” is
true, this behavior is performed immediately before exiting the State. Any targets of the incorporates
relationship with a Behavior Type of “Integrated (Root)” indicates behavior that is performed once the
“Entry” behavior completes and continues until it finishes or the State exits.

One or more subordinate States may decompose a single State, which delineates the progression from a
composite State to an atomic State (the targets of the decomposed by relation is empty). The movement
from one State to another State occurs through a Transition. A State is exited by a Transition and
correspondingly, the Transition enters a new State or may re-enter the same State. However, the timing
of the Transition’s effect is governed by a Guard Condition attribute. The Guard Condition attribute is a
rule, empty, simple, or complex, which results in a Boolean value (an empty Guard Condition is not
evaluated). If true, the Transition occurs; otherwise, the Transition waits for the Guard Condition to
change from false to true.

Events serve to communicate to external State machines at the time point of a Transition. A Transition
triggers an Event and an Event is responsible for an OperationalItem, which conveys the message
governed by the Event.

Figure 10 State View

Table 7 State View

Entity Class Attributes Relations Target Classes
Component See SDG contains (contained by) Mode

exhibits (exhibited by) State

Architecture Definition Guide

15

Table 7 State View

Entity Class Attributes Relations Target Classes
Event Condition

Description
Doc. PUID
Type

augmented by
(augments)

ExternalFile
Text

documented
(documents)

Document

responsible for
(assigned to)

Item
OperationalItem

triggers (triggers) Transition
Function See SDG incorporated by

(incorporates)
State

services (serviced by) Transition
Item See SDG assigned to

(responsible for)
Event

Mode Description
Doc. PUID
Number

augmented by
(augments)

ExternalFile
Text

contained by
(contains)

Component
Performer

documented by
(documents)

Document

encompasses
(encompassed by)

State

impacted by
(impacts)

Concern
Risk

specified by (specifies) Requirement
OperationalActivity See Section 3.1 incorporated by

(incorporates)
State

services (serviced by) Transition
OperationalItem See Section 3.1 assigned to

(responsible for)
Event

Performer See Section 2.1 contains (contained by) Mode
State Description

Doc. PUID
Number
Title

augmented by
(augments)

ExternalFile
Text

decomposed by
(decomposes)

State

documented by
(documents)

Document

encompassed by
(encompasses)

Mode

entered by (enters) Transition
exhibited by (exhibits) Component

Performer
exited by (exits) Transition

Architecture Definition Guide

16

Table 7 State View

Entity Class Attributes Relations Target Classes
impacted by
(impacts)

Concern
Risk

incorporates
(incorporated by)

Function
OperationalActivity

specified by
(specifies)

Capability
Requirement

Transition Delay
Delay Units
Description
Guard
Number

augmented by
(augments)

ExternalFile
Text

documented by
(documents)

Document

enters (entered by) State
exits (exited by) State
triggered by (triggers) Event

4. OPERATIONAL ARCHITECTURE SYNTHESIS

4.1 Assign OperationalActivities to Next Level of Performers
In conjunction with the analysis of the CONOPS document, OperationalActivity as well as Performer
decomposition occurs in tandem as part of the process to refine the operational architecture. This
hierarchical decomposition process results in more specificity regarding subordinate Performers and their
required behaviors.

As the Performer hierarchy evolves, Performers uniquely perform more specific OperationalActivities.
OperationalActivity refinement is accomplished in layers. When a decomposed root or capability
OperationalActivity is allocated to a Performer, all lower-level OperationalActivities in its decomposition
path are part of the behavior of the Performer. The Performer may be correspondingly decomposed, in
which case even lower-level OperationalActivities are allocated to the lower-level Performers. The
lowest-level OperationalActivities are indicated as Standard. Since OperationalActivities can be
aggregated to enhance understanding, there is not necessarily a one-to-one correspondence between
levels in the OperationalActivity hierarchy and levels in the Performer hierarchy.

Performers are mapped to Organizations using the assigned to relation.15 With all the previous
relationships established as described in Section 3.1 for each layer of Performer decomposition, it is
possible, through tracing the appropriate relationships, to identify what capabilities and integrated behavior
the Organization is responsible for as well as any subordinate Missions, if they were defined.

Note: As stated in Section 3.1, when developing behavior, a root OperationalActivity can be established
for any Performer and the behavior diagram constructed using the standard OperationalActivities, which
defines the full behavior of the Performer from the Performer’s perspective rather than from the
architecture’s perspective.

15 Organizations, organizational units, roles, etc. are represented as Organization entities with a parent-child relation
reflecting command structure. They are also represented as Performers in which case hierarchically related units are
often peers because of the OperationalActivities that they perform, and the communication needed between them.

Architecture Definition Guide

17

Figure 11 Performer Hierarchy and OperationalActivity Assignment

Table 8 Performer Hierarchy and OperationalActivity Assignment

Entity Class Attributes Relationships Target Classes
Performer See Section 2.1 assigned to

(responsible for)
Organization

built from (built in) Performer
built in (built from) Performer
performs
(allocated to)

OperationalActivity

OperationalActivity See Section 3.1 allocated to (performs) Performer
Organization See Section 2.3 responsible for

(assigned to)
Performer

4.2 Refine External Needline Definitions
An external Needline entity identifies that the operational architecture communicates in some manner with
an external Performer (See Section 2.4).16 Needlines are decomposable by means of the includes relation.
Since a Needline has a maximum of two targets, a decomposable Needline enables the systems
engineer/architect to make the Needline connections consistent with the Performer hierarchy, without
having to move a terminus point of a Needline to a lower-level Performer. This simplifies the maintenance
of Needlines through the architecture.

Needlines may be specified by performance and constraint Requirements. A Needline should only transfer
the lowest level of OperationalItem.

16 If the external Performer is a threat source, then the communication entity offered by the threat source is some
observable that an OperationalActivity within the Architecture can recognize. Including externals such as a threat
source allows the engineering team to better analyze and specify the architecture.

Architecture Definition Guide

18

Figure 12 External Needline Definition

Table 9 External Needline Definition

Entity Class Attributes Relationships Target Classes
Needline See Section 2.4 connects to

(connected to)
Performer

includes (included in) Needline
transfers
(transferred by)

OperationalItem

OperationalItem See Section 3.1 transferred by
(transfers)

Needline

input to (inputs) OperationalActivity
outputs (output from) OperationalActivity

Performer See Section 2.1 connected to
(connects to)

Needline

built from (built in) Performer

4.3 Derive or Refine Internal Needlines
Within the Performer hierarchy, the assignment of OperationalActivities to Performers establishes the
internal Needlines of the Architecture based on the OperationalItems that flow between the assigned
OperationalActivities. The internal Needlines are formalized in the repository using the Needline entity
class.

Needlines are decomposable by means of the includes relation. Since a Needline has a maximum of two
targets, a decomposable Needline enables the systems engineer/architect to make the Needline
connections consistent with the Performer hierarchy, without having to move a terminus point of a
Needline to a lower-level Performer. This simplifies the maintenance of Needlines through the
architecture.

Architecture Definition Guide

19

As the Performer hierarchy evolves further, the lower-level Performers, terminating a Needline, perform
OperationalActivities and these outputs or inputs the OperationalItems transferred by the Needlines.

Needlines may be specified by performance and constraint Requirements. A Needline should only
transfer the lowest layer of OperationalItem.

Figure 13 Internal Needline Definitions

Table 10 Internal Needline Definitions

Entity Class Attributes Relationships Target Classes
Needline See Section 2.4 connects to

(connected to)
Performer

includes (included in) Needline
transfers
(transferred by)

OperationalItem

OperationalItem See Section 3.1 transferred by
(transfers)

Needline

input to (inputs) OperationalActivity
output from (outputs) OperationalActivity

Performer See Section 2.1 connected to
(connects to)

Needline

performs (allocated
to)

OperationalActivity

Architecture Definition Guide

20

5. OPERATIONAL VIEWPOINT VALIDATION USING THE SIMULATOR
The simulator within GENESYS is a discrete event simulator that executes the OperationalActivity and
OperationalItem behavior views to provide an assessment of operational architecture performance and to
verify the dynamic integrity of the conceptual model. The simulator dynamically interprets a behavior view
(i.e., an Activity Diagram, Enhanced Functional Flow Block Diagram [EFFBD]) in conjunction with
OperationalItems and identifies and displays timing, resource utilization, operational item flow, and
behavioral inconsistencies. The simulator usage should be an integral part of operational analysis and
operational architecture synthesis.

6. OPERATIONAL ARCHITECTURE CONSIDERATIONS
Definition of the operational and systems architecture should be done consistently with the structured
approach documented in the SDG. Although the operational architecture may involve numerous systems,
the SDG principles remain unchanged. The systems engineering/architecture activities needed to complete
the overall architecture and to interrelate the operational and systems domains are addressed in the
following sections.

6.1 Performance Requirements
Entities in the Requirement class are used to capture performance requirements and parameters for
system entities. Performance requirements and parameters include both current values for existing entities
and threshold and objective values per time frame for existing or new entities.

Figure 14 Performance Requirements

Table 11 Performance Requirements

Entity Class Attributes Relations Target Classes
Needline See Section 2.4 specified by

(specifies)
Requirement

OperationalActivity See Section 3.1 based on (basis of) Requirement
Performer See Section 2.1 specified by

(specifies)
Requirement

Requirement

See Section 2.2

basis of (based on) OperationalActivity
specifies
(specified by)

Performer
Needline

6.2 Services Development
Services exist as both a subset of functional behavior and as part of a system. Within the functional behavior
view [in the Function class], all leaf-level entities that compose the functionality of a service are collected
under a root Function via the decomposed by relation.

Architecture Definition Guide

21

Services are created as a Component entity with the Type attribute set to “Service.” The Service Type
attribute should be set to “Consumer,” “Provider,” or “Both” as appropriate. The Component entity performs
the root Function, with the Behavior Type attribute set to “Integrated (Services).”

A service specification contains the attributes of a service to be included in the DoDAF viewpoints for a net-
centric environment or hybrid system. Service attributes for an internal service (one which is being
developed) are developed throughout the operational and system analysis process and are documented in
the ServiceSpecification class. Service attributes, for an external service (one which is an external in the
system context), are provided by the service provider. A Component of Type “Service” is documented by
a ServiceSpecification.

Figure 15 Services

Table 12 Services

Entity Class Attributes Relations Target Classes
Component

See SDG built from (built in) Component
(Type: Service)

Component
(Type: Service)

See SDG
Type: Service

performs
(allocated to)

Function
(Behavior Type:

Integrated
(Services))

documented by
(documents)

ServiceSpecification

Function
(Behavior Type:

Integrated
(Services))

See SDG allocated to
(performs)

Component

Link See SDG connects to
(connected to)

Component

Architecture Definition Guide

22

Table 12 Services

Entity Class Attributes Relations Target Classes
ServiceSpecification Access Criteria

Authentication
Mechanism

Data Type
Effects
Information Security

Markings
Overview
Point Of Contact
SAP Type
Service Access Point
Service Version
WDSL - Web

Services Definition
Language

documents
(documented by)

Component
(Type: Service)

6.3 Requirements Development
Capabilities, OperationalActivities, and UseCases serve as sources for system Requirements.
Capabilities, more typically are associated with OperationalActivities, lead to the identification and
definition of functional Requirements. However, Capabilities, in themselves, may directly lead to system
Requirements. UseCases lead to the identification and definition of functional and performance
Requirements. The relationships between these classes are provided in Figure 6. See the SDG for a
description and use of Requirement attributes.

Figure 16 Requirements Development

Architecture Definition Guide

23

Table 13 Requirements Development

Entity Class Attributes Relations Target Classes
Capability See Section 2.2 implemented by

(implements)
Requirement

result of (results in) OperationalActivity
OperationalActivity See Section 3.1 results in (result of) Capability

Requirement
Requirement See Section 2.2 basis of (based on) UseCase

implements
(implemented by)

Capability

result of (results in) OperationalActivity
UseCase See Section 3.1 based on (basis of) Requirement

6.4 Traceability from Operational Architecture
The implemented by / implements relations map the operational behavior and Performers to the system
behavioral and physical entities. These relationship pairs enable full traceability from the operational
architecture to the system architecture in the physical, requirement, or functional domain and therefore,
make it easier for the systems engineering team to assess the impacts in the system architecture when
changes occur within the operational architecture. Conversely, the reverse mapping of the system
architecture entities into the entities in the operational architecture makes it easier for the systems
engineering/architecture team to assess the impacts within the operational domains when changes occur
in the systems architecture. See the SDG regarding Component, Function, Item, and Link.

Figure 17 Operational to Systems Traceability

Architecture Definition Guide

24

Table 14 Operational to Systems Traceability

Entity Class Attributes Relations Target Classes
Capability See Section 2.2 implemented by

(implements)
Requirement

Component See SDG implements
(implemented by)

Performer

Function See SDG implements
(implemented by)

(Status: nil,
Planned, Partial,
or Full)

OperationalActivity

Item See SDG implements
(implemented by)

OperationalItem

Link See SDG implements
(implemented by)

Needline

Needline See Section 2.4 implemented by
(implements)

Link

OperationalActivity See Section 3.1 implemented by
(implements)

(Status: nil,
Planned, Partial,
or Full)

Function

OperationalItem See Section 3.1 implemented by
(implements)

Item

Performer See Section 2.1 implemented by
(implements)

Component

Requirement See SDG implements
(implemented by)

Capability

Architecture Definition Guide

25

7. PROGRAM MANAGEMENT ASPECTS
Managing operational architecture development and systems development within a MBSE environment
should conform to whether the programs or projects are top-down, bottom-up, or middle-out in nature. The
DoDAF-described Models within the Project Viewpoint describe how programs, projects, portfolios, or
initiatives deliver capabilities, the organizations contributing to them, and dependencies among them.
Previous versions of DoDAF took a traditional modeling approach of architecture in which descriptions of
programs and projects were considered outside DoDAF’ s scope. To compensate for this, various DoDAF
views represented the evolution of systems, technologies, and standards (e.g., Systems and Services
Evolution Description, Systems Technology Forecast, and Technical Standards Forecast), which had a
future programmatic cast. The integration of Project Viewpoints (organizational and project-oriented) with
the more traditional architecture representations characterizes DoDAF-v2.02-based enterprise architectural
descriptions.

7.1 Program/Project Basics
Organizations and Architectures are related through the Program/Project Viewpoint to relate the
enterprise’s objectives with the Architecture and those Organizations involved. The Program or Project
viewpoint develops from the ProgramElement class. Each entity within the ProgramElement class
represents some aspect of the structure of the program or project. These entities are related through the
included in / includes relation pair. When complete, the resulting hierarchical structure represents the Work
Breakdown Structure for the program or project. The Type attribute identifies whether the program entity
instance is a “Program,” “Project,” “Work Package,” or “Task.” The top-most program entity (Type:
“Program”) implements an Architecture.17 Assigned to each ProgramElement is an Organization, which
is responsible for some aspect of the program/project. A ProgramElement of Type: “Task” represents the
lowest ProgramElement for which cost accounting is performed.

The top-most ProgramElement is specified by one or more programmatic Requirements, which are
represented as entities within the Requirement class. These Requirements describe the desired effect
(outcome) or achievement level in operational processes, projects, or special programs. Subordinate
Requirements may specify lower-level ProgramElements (Type: Project, Work Package, or Task).
Program/Project risks are followed and managed through the Risk class. Normally, a ProgramElement
resolves a Risk by instituting strategies to mitigate the risk; however, provision is made for those cases
where a ProgramElement may in itself cause a Risk, which program managers must mitigate. The
acquisition of Capabilities is another important aspect of Program Management. A Capability is supplied
by a ProgramElement, which implements an Architecture. Note: A Capability is the basis of an
OperationalActivity (see Section 3.1). A ProgramElement also supplies one or more stakeholder
deliverables (i.e., an entity of some or all of these classes Capability, Component, Document, or
Performer).

17 Enterprise architecture would cover multiple programs, and each program may include multiple projects.

Architecture Definition Guide

26

Figure 18 Program Management Basics

Table 15 Program Management Basics

Entity Class Attributes Relations Target Classes
Architecture See Section 2.1 implemented by

(implements)
(Status: nil,
Planned, Partial,
or Full)

ProgramElement

Capability See Section 2.2 supplied by
(supplies)

ProgramElement

Component See SDG supplied by
(supplies)

ProgramElement

Document See Section 2.2 supplied by
(supplies)

ProgramElement

Performer See Section 2.1 supplied by
(supplies)

ProgramElement

Organization See Section 2.3 responsible for
(assigned to)

ProgramElement

Product Description
Number
Size
Size Units
Type

decomposed by
(decomposes)

Product

input to (inputs) ProgramActivity
output from
(outputs)

ProgramActivity

ProgramActivity BeginLogic
Description
Doc. PUID
Duration
EndLogic

accomplishes
(accomplished by)

ProgramElement

decomposed by
(decomposes)

ProgramActivity

inputs (input to) Product

Architecture Definition Guide

27

Table 15 Program Management Basics

Entity Class Attributes Relations Target Classes
ExitLogic
Number
Timeout
Title

outputs (output
from)

Product

ProgramElement Contract Number
Cost
Description
End Date
Labor Hours
Non-recurring Cost
Start Date
Type

accomplished by
(accomplishes)

ProgramActivity

assigned to
(responsible for)

Organization

augmented by
(augments)

ExternalFile

causes (caused by) Risk
implements
(implemented by)

Architecture

includes
(included in)

ProgramElement

resolves
(resolved by)

Risk

specified by
(specifies)

Requirement

supplies
(supplied by)

Capability
Component
Performer

Risk Consequence
Handling Approach
Likelihood
Risk Rating
Risk Score
Scoring Rationale
Significance
Status
Trigger Date
Type

caused by (causes) ProgramElement
impacted by
(impacts)

ProgramElement

7.2 Program Management Activity View
Another important facet of program management is developing and maintaining program or project
schedules, i.e., timelines. These timelines are established through the ProgramActivity class. The
ProgramActivity class allows the program management team to establish the sequencing of work
necessary to accomplish the Task, Work Package, Project, or Program represented by a ProgramElement.

The ProgramActivity behavior of a ProgramElement of Type: Project is the cumulative behaviors of all
subordinate ProgramElement behaviors. The intent of each ProgramElement entity is accomplished by
a ProgramActivity and correspondingly, the behavior of each ProgramActivity accomplishes the intent
of its ProgramElement. The integrated ProgramActivity behavior is developed from integrating

Architecture Definition Guide

28

subordinate Task, Work Package, or Project behaviors (workflows) into a single behavior view that fully
represents the workflow required by the parent ProgramActivity. The simulator (see Section 0) will execute
the program activity views to provide an assessment of the timeline performance (schedule) and to verify
the dynamic integrity of the conceptual program management view. The simulator dynamically interprets a
behavior view (i.e., the EFFBD) and identifies and displays timing, resource usage, product flow, and
viewpoint inconsistencies.

ProgramActivity Inputs and Outputs. Each ProgramActivity’s integrated behavior will have input and
output Product entities identified. These Product entities are associated with ProgramActivities using
the relations: input to / inputs and output from / outputs. As with ProgramActivities, Products should be
aggregated to simplify presentation.

Requirements Traceability. ProgramActivity traceability to an appropriate Requirement entity is
established using the based on relation. Traceability to a ProgramElement uses the accomplishes relation
thereby, identifying the ProgramActivities that accomplish some aspect of the work breakdown structure.

ProgramActivity traceability from an appropriate Capability occurs through the supplied by relations to
an intermediary ProgramElement. The ProgramElement supplies a Capability and is accomplished by
one or more ProgramActivities.

Figure 19 Program Activity View

Table 16 Program Activity View

Entity Class Attributes Relations Target Classes
ProgramActivity See Section 7.1 accomplishes

(accomplished by)
ProgramActivity

based on (basis of) Requirement
decomposed by
(decomposes)

ProgramActivity

elaborates
(elaborated by)

UseCase

inputs (input to) Product

outputs
(output from)

Product

Architecture Definition Guide

29

Table 16 Program Activity View

Entity Class Attributes Relations Target Classes
ProgramElement See Section 7.1 accomplished by

(accomplished)
ProgramActivity

Product See Section 7.1 augmented by
(augments)

ExternalFile

decomposed by
(decomposes)

Product

documented by
(documents)

Document

input to (inputs) ProgramActivity
output from
(outputs)

ProgramActivity

specified by
(specifies)

Requirement

Requirement See Section 2.2 basis of (based on) ProgramActivity
Use Case See Section 3.1 elaborated by

(elaborates)
ProgramActivity

8. DOCUMENTATION—DODAF V2.02 VIEWPOINTS
GENESYS includes a set of reports to output each of the DoDAF v2.02 viewpoints. As appropriate to the
particular viewpoint, each viewpoint document contains a standard GENESYS diagram, a table generated
from the contents of the repository, or an external file referenced by an ExternalFile entity. Because the
viewpoints are generated as a result of applying the MBSE process to architecture definition, these reports
have been designed to be flexible in order to support the architects/systems engineers developing the
architecture on an on-going basis and to produce the viewpoints for customer usage.

Table 17 DODAF v2.02 Viewpoint Reports

Viewpoint Viewpoint Title Document Output
AV-1 Overview and Summary

Information
User-selected Architecture Description, Purpose,

Scope, Time Frame, achieves Mission name and
Description, and augmented by Text and
ExternalFiles.

AV-2 Integrated Dictionary User-selected Architecture.
CV-1 Vision User-selected Architecture implemented by

ProgramElement, which provides Capability.
CV-2: Capability Taxonomy User-selected Architecture implemented by

ProgramElement, which supplies Capability, and
Capability is refined by Capability.

CV-3 Capability Phasing User-selected Architecture implemented by
ProgramElement, which supplies Capabilities.
ProgramElements determine when projects supplying
entities of capability are to be delivered, upgraded, and/or
withdrawn.

CV-4 Capability Dependencies Category categorizes Capability.

Architecture Definition Guide

30

Table 17 DODAF v2.02 Viewpoint Reports

Viewpoint Viewpoint Title Document Output
CV-5 Capability to Organizational

Development Mapping
User-selected Architecture specified by Capability

refined by Capability
CV-6 Capability to Operational

Activities Mapping
User-selected Architecture specified by Capability

refined by Capability basis of OperationalActivity
allocated to Performer.

CV-7 Capability to Services
Mapping

Matrix mapping Capability to Performer of Type
“Service Functionality Provider.”

DIV-1 Conceptual Data Model Data entities used and their attributes and relations
stemming from the Architecture composed of
Component of Type: “Service,” perform Functions of
Type: “Service.”

DIV-2 Logical Data Model Outputs characteristics of OperationalItems that are
output from or input to one or more
OperationalActivities, which are derived from a user-
selected Architecture composed of Performers. A
Performer performs an OperationalActivity, its
children, and, optionally, their children.

DIV-3 Physical Data Model Outputs an OperationalItem characteristics table for
OperationalItems related to a user-selected
Architecture, OperationalItems are derived from a
user-selected Architecture composed of Performers.
A Performer performs an OperationalActivities, its
children, and, optionally, their children.

OV-1 High-Level Operational
Concept Graphic

Outputs a hierarchy diagram and/or ExternalFile for
each Performer composing an Architecture.

OV-2 Operational Resource Flow
Description

Physical Block Diagram (PBD) for each Performer
composing an Architecture.

OV-3 Operational Resource Flow
Matrix

Summary matrix or full matrix for information exchanges
of the children of OperationalActivity(s) allocated to
Performers composing the user-selected
Architecture.

OV-4 Organization Relationships
Chart

Organization Hierarchy stemming for each Architecture
assigned to an Organization.

OV-5a Operational Activity
Decomposition Tree

Capability to Operational Activities Hierarchy for
Capability specifies Architecture

Performer Operational Activities Hierarchy for
OperationalActivity(s) allocated to Performers that
compose the user-selected Architecture.

OV-5b Operational Activity Model User-selected behavior diagram for presenting an
OperationalActivity and its children. Includes optional
output of Function Hierarchy for selected
OperationalActivity.

OV-6a Operational Rules Model EFFBD or Activity Diagrams for OperationalActivity(s)
allocated to Performers that compose the user-
selected Architecture, with Requirements of Type:
“Guidance,” which specifies one or more
OperationalActivities.

Architecture Definition Guide

31

Table 17 DODAF v2.02 Viewpoint Reports

Viewpoint Viewpoint Title Document Output
OV-6b State Transition Description User-selected ExternalFiles and States that are

exhibited by Performers that compose the user-
selected Architecture.

OV-6c Event-Trace Description Sequence Diagrams for OperationalActivity(s)
allocated to Performers that compose the user-
selected Architecture.

PV-1 Project Portfolio
Relationships

Organization linked to ProgramElement and one
hierarchical level below the top ProgramElement to
account for Projects subordinate to a Program.

PV-2 Project Timelines An ExternalFile and ProgramElement table derived
from a user-selected Architecture.

PV-3 Project to Capability Mapping User-selected Architecture implemented by
ProgramElements mapped to Capabilities.

SvcV-1 Services Context Description Hierarchy and Physical Block Diagrams for
Component(s) of Type: “Service” that composes the
user-selected Architecture. Also, an Entity Definition
and Interconnection Table for the Components,
Items, and Links encountered.

SvcV-2 Services Resource Flow
Description

Physical Block Diagram and Resource Flow Table for
Component(s) of Type: “Service” that composes the
user-selected Architecture.

SvcV-3a Systems-Services Matrix Matrix identifying interfacing Component(s) of Type:
“Service” with those Component(s) that are not of
Type: “Service” that composes the user-selected
Architecture.

SvcV-3b Services-Services Matrix Matrix identifying interfacing Component(s) of Type:
“Service” that composes the user-selected
Architecture.

SvcV-4 Services Functionality
Description

User selected behavior diagrams and tables for
Function(s) allocated to Component(s) of Type:
“Service” that composes the user-selected
Architecture.

SvcV-5 Operational Activity to
Services Traceability
Matrix

Matrix mapping Functions allocated to Component(s)
Type: “Service” that composes the user-selected
Architecture and their associated Links, and
Functions to OperationalActivity(s).

SvcV-6 Services Resource Flow
Matrix

Summary matrix or full matrix for data exchanges of the
children of Component (s) of Type: “Service” that
composes the user-selected Architecture.

SvcV-7 Services Measures Matrix Quantitative performance measures (Requirements of
Type: “Performance”) for the children of
Component(s) of Type: “Service” that composes the
user-selected Architecture and their associated
Links and Functions.

SvcV-8 Services Evolution
Description

User-selected ExternalFile.

Architecture Definition Guide

32

Table 17 DODAF v2.02 Viewpoint Reports

Viewpoint Viewpoint Title Document Output
SvcV-9 Services Technology & Skills

Forecast
User-selected ExternalFile.

SvcV-10a Services Rules Model Table for Document(s) of Type: “Guidance” or
“Standard,” which document Requirement(s). A
second table, which document Components,
Functions, Items, and Links.

SvcV-10b Services State Transition
Description

Hierarchy Diagram of Components of Type: “Service”
that exhibits State(s) that composes the user-selected
Architecture.

SvcV-10c Services Event-Trace
Description

Sequence Diagram and table for service-related
Functions allocated to Component(s) of Type:
“Service” that composes the user-selected
Architecture.

StdV-1 Standards Profile A table of standards that apply to solution entities along
with the description of emerging standards and
potential impact on current solution entities, within a
set of time frames.

StdV-2 Standards Forecast See StdV-1.

SV-1 Systems Interface
Description

Physical Block Diagram and Interconnection Table for
Component(s) of Type: “System” that composes
user-selected Architecture.

SV-2 Systems Resource Flow
Description

Physical Block Diagram and Resource Flow Table for
Component(s) of Type: “System” that composes
user-selected Architecture.

SV-3 Systems-Systems Matrix Matrix identifying interfacing Component(s) of Types
other than “Service” that composes the user-selected
Architecture.

SV-4 Systems Functionality
Description

User-selected behavior diagrams and tables for
Function(s) allocated to Component(s) of Type:
“System” that composes the user-selected
Architecture.

SV-5a Operational Activity to
Systems Function
Traceability Matrix

Matrix mapping Functions allocated to Component(s) of
Type: “System” that composes the user-selected
Architecture and their associated
OperationalActivity(s), Performers, and
Capabilities.

SV-5b Operational Activity to
Systems Traceability
Matrix

Matrix mapping Component(s) of Type: “System” that
composes the user-selected Architecture and their
associated OperationalActivity(s).

SV-6 Systems Resource Flow
Matrix

Summary matrix or full matrix for data exchanges of the
children of Component(s) of Type: “System” that
composes the user-selected Architecture.

SV-7 Systems Measures Matrix Quantitative performance measures (Requirements of
Type: “Performance”) for the children of
Component(s) of Type: “System” that composes the
user-selected Architecture and their associated

Architecture Definition Guide

33

Table 17 DODAF v2.02 Viewpoint Reports

Viewpoint Viewpoint Title Document Output
Links and Functions.

SV-8 Systems Evolution
Description

User-selected Component and ExternalFile.

SV-9 Systems Technology & Skills
Forecast

User-selected Component and ExternalFile.

SV-10a Systems Rules Model EFFBD or Activity diagrams for Function(s) allocated to
Components(s) of Type: “System” that composes the
user-selected Architecture.

SV-10b Systems State Transition
Description

Hierarchy Diagram of Components of Type: “System”
that exhibits State(s) that composes the user-selected
Architecture.

SV-10c Systems Event-Trace
Description

Sequence Diagram and table for system-related
Functions allocated to Component(s) of Type:
“System” that composes the user-selected
Architecture.

In addition to the DoDAF viewpoint reports, GENESYS provides several other reports to aid the systems
engineers in communication and assessment of the architecture definition.

,

 2270 Kraft Drive, Suite 1600
Blacksburg, Virginia 24060

+1 540 951 3322 | Fax: +1 540 951 8222
www.vitechcorp.com

Customer Support:

+1 540 951 3999 | support@vitechcorp.com

https://www.vitechcorp.com/
mailto:support@vitechcorp.com

	Preface
	1. Architecture Concepts
	1.1 Operational and System Architecture Domain Relationships

	2. Operational Concept Capture
	2.1 Define Architecture
	2.2 Capture Source Material
	2.3 Identify Organizations
	2.4 Define Operational Boundary
	2.5 Classification

	3. Operational Activity Analysis
	3.1 Operational Activity View
	3.2 State View

	4. Operational Architecture Synthesis
	4.1 Assign OperationalActivities to Next Level of Performers
	4.2 Refine External Needline Definitions
	4.3 Derive or Refine Internal Needlines

	5. Operational Viewpoint Validation Using the Simulator
	6. Operational Architecture Considerations
	6.1 Performance Requirements
	6.2 Services Development
	6.3 Requirements Development
	6.4 Traceability from Operational Architecture

	7. Program Management Aspects
	7.1 Program/Project Basics
	7.2 Program Management Activity View

	8. Documentation—DoDAF v2.02 Viewpoints

