
Getting Started with GENESYS™ API

i

Getting Started
with the
GENESYS™ API

Getting Started with GENESYS™ API

 ii

Copyright © 2014-2023 Zuken Vitech Inc. All rights reserved.

No part of this document may be reproduced in any form including, but not limited to, photocopying,
language translation, or storage in a data retrieval system, without Vitech’s prior written consent.

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in the applicable
GENESYS End-User License Agreement and in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause at DFARS 252.277-7013 or subparagraphs (c)(1) and (2) of the Commercial
Computer Software - Restricted Rights at 48 CFR 52.227-19, as applicable, or their equivalents, as may
be amended from time to time.

Zuken Vitech Inc.
2270 Kraft Drive, Suite 1600
Blacksburg, Virginia 24060

540.951.3322 FAX: 540.951.8222
Customer Support: support@vitechcorp.com

www.vitechcorp.com

is a trademark of Zuken Vitech Inc. and refers to all products in the GENESYS
software product family.

Other product names mentioned herein are used for identification purposes only and may be trademarks
of their respective companies.

Publication Date: June 2023

mailto:support@vitechcorp.com
https://www.vitechcorp.com/

iii

TABLE OF CONTENTS

Getting Started .. 1

Note to Programmers .. 1

Basic GENESYS Architecture ... 2

Basic GENESYS Data Structures Overview ... 3

Goals and Objectives .. 4

Logging Into GENESYS .. 5

Navigating the GENESYS Model .. 7

Reading a GENESYS Entity ... 8

Creating a GENESYS Entity ... 9

Modifying a GENESYS Entity ... 11

Logging Out of GENESYS .. 12

Deployment ... 12

Where to Find Further Help... 12

APPENDIX A: PreRequisites, Assemblies, and Configuration ... 13

.NET Framework Prerequisites ... 13

Key GENESYS API Assemblies .. 13

Vitech.Genesys .. 13

Vitech.Genesys.Client .. 13

Vitech.Genesys.Common .. 13

Vitech.Genesys.Logging .. 13

Vitech.Genesys.Random ... 13

Licensing Assemblies .. 13

App.config .. 14

Upgrading to a new version ... 14

Getting Started with GENESYS™ API

 iv

CUSTOMER RESOURCE OPTIONS

Supporting users throughout their entire journey of learning model-based systems engineering (MBSE) is
central to Vitech’s mission. For users looking for additional resources outside of this document, please refer
to the links below. Alternatively, all links may be found at www.vitechcorp.com/online-resources/.

Webinars

Immense, on-demand library of
webinar recordings, including
systems engineering industry
and tool-specific content.

Screencasts

Short videos to guide users
through installation and usage of
GENESYS.

A Primer for Model-Based

Systems Engineering

Our free eBook and our most
popular resource for new and
experienced practitioners alike.

Help Files

Searchable online access to
GENESYS help files.

Technical Papers

Library of technical and white
papers for download, authored
by Vitech systems engineers.

Technical Support

Frequently Asked Questions
(FAQ), support-ticket web form,
and information regarding email,
phone, and chat support options.

https://www.vitechcorp.com/online-resources/
https://www.vitechcorp.com/webinar-videos-on-demand/
https://www.vitechcorp.com/genesys-screencasts-on-demand/
https://www.vitechcorp.com/mbse-primer/
https://www.vitechcorp.com/mbse-primer/
https://www.vitechcorp.com/resources/GENESYS/onlinehelp/desktop/
https://www.vitechcorp.com/technical-papers/
https://www.vitechcorp.com/technical-support/
http://www.vitechcorp.com/webinars
http://www.vitechcorp.com/screencasts
http://www.vitechcorp.com/mbseprimer
http://www.vitechcorp.com/resources/GENESYS/onlinehelp/desktop/
http://www.vitechcorp.com/technicalpapers
http://www.vitechcorp.com/MySupport/support/default.aspx

Getting Started with GENESYS™ API

1

GETTING STARTED
The GENESYS™ architecture is designed with an extensive public API as its fundamental architecture.
The external application developer has full access to the same interfaces which the GENESYS thick client
uses, providing full programmatic access to repository and project model data. Vitech follows standard,
accepted Microsoft® .NET™ framework practices when it comes to managing public interfaces, resulting
in a familiar look and feel to external application developers.

Vitech is a strong supporter of API development efforts, both within individual customer organizations and
as open-source examples across the user community, in order to extend and fine-tune the benefits offered
by the GENESYS platform. Repository and model data are fully available for virtually any application,
whether it is reports, dashboards, “connectors” to other data models, or other user-facing solutions that add
additional value to an organization’s systems engineering efforts.

The Requirements Commenter Page is a simple, but useful example of one of the many ways to add value
to the fundamental GENESYS model. By narrowly focusing on one aspect of the systems model—
Requirements—the Requirements Commenter Page allows a non-technical stakeholder to add to the
model without the overhead of learning details of the highly technical modeling tool.

Specific requirements for writing a GENESYS API application are in Appendix A. All the necessary files,
including the Microsoft® Visual Studio project files, necessary to compile this example can be found in the
GENESYS install folder under the Samples\API Samples\ sub folder.

NOTE TO PROGRAMMERS
This document and the corresponding sample application are intended to give a basic introduction to the
GENESYS API. As such, the code is written for brevity and clarity; the try/catch structures are minimal, and
basic input and error checking may not be complete. This code is provided as a model for your own
application; you can use this example by copying and pasting relevant sections from the document for your
own purposes. The sample code referenced in this document can be found in any GENESYS installation,
in the install folder, under the Samples\API Samples\RequirementCommenter\ sub folder. The GENESYS
install directory path is by default C:\Program Files (x86)\Vitech\GENESYS {version} {edition}.

Since systems engineering and software engineering both have the concept of a class, which are related
but distinct, this document will use the term model class when referring to a systems engineering class in
the GENESYS schema, and simply class when referring to the software engineering concept of class.
Another potential area of confusion is the term entity. In this document, entity will always refer to the
model-based systems engineering concept of an entity, which is a particular instantiation of any model
class within the model.

When developing an application for GENESYS using the API, it is useful to have a GENESYS client running
on your second screen. Any updates you make to the model will show up immediately in the GENESYS
client. To save the time required to build a test model, it is recommended that you import one of the sample
projects—either the SAMPLE: Geospatial Library, or SAMPLE: Fast Food. This will give you a well-
developed model on which to experiment. Make sure you have full permissions on the model you intend to
use for testing.

Getting Started with GENESYS™ API

 2

BASIC GENESYS ARCHITECTURE

The Requirements Commenter Page program will use the same client API used by all other GENESYS
clients. The Client API (a set of .NET 4.6 dlls), and the Sentinel License Manager (a third-party component
installed with GENESYS) need to reside on your development machine and need to be installed on the end
user’s machine when the application is deployed. The GENESYS host service, repository, and license may
reside on any machine in your network domain. We recommend that you install the GENESYS 2023 edition
on your development machine. This will install all needed components and creates an ideal development
environment. For specifics on the files and their installation, refer to Appendix A.

The Sentinel License Manager is third party software used to manage licenses for the GENESYS family of
products. There are two licensing modes used by the client API: local and network. Local licensing forces
the client to use only licenses local to the client API’s machine. Network allows the user to select a license
from any machine on your domain. Use the License Manager installed with your GENESYS product to
switch between local and network modes. Whichever method you choose, the Sentinel License Manager
is required to be running on the client API machine. To inspect the disposition of both local and network
GENESYS licenses, point an internet browser at http://localhost:1947.

As a programmer, you will be working with the Client API. The Client API is accessed using the ClientModel
object. These objects will allow you to connect to the known repositories on the network and provide the
login method, which returns a RepositoryConfiguration object. This object is then used to access the
GENESYS model data.

CLIENT API
GENESYS
SERVICE

REPOSITORY

Your Machine

License Manager License Manager

Requirements Commenter Page
Power Point Connector
MS Project Connector
Excel Connector
GUI Client
…

http://localhost:1947/

Getting Started with GENESYS™ API

3

BASIC GENESYS DATA STRUCTURES OVERVIEW
The repository object is your entry point into the GENESYS models stored on that repository. There are
several ways to navigate/view the model data in repositories. For this example, we will demonstrate the
basic hierarchical view.

For the current project, the diagram above provides sufficient understanding to locate the entities you need
to access.

Project and top-level folder names are always unique. Folder
names are also unique within a parent folder. Depending on how
the individual project is set up, names of entities may not be
unique. Entity IDs are always unique.

Folders contain specific model classes. A top-level folder and all of its subfolders contain only one type of
model class. An entity’s model class (type) is determined by which folder it was created in. Entities in a
class can be moved between subfolders within the class, but cannot be moved between classes (or folders
in the data structure) without transforming the entity.

GENESYS has a sophisticated and finely grained permissions system, to the point that individual users
may have permissions limited to particular entities. An entity for which you do not have read permissions
as a GENESYS user, will either not appear in the application dialog window or you will not be allowed to
read of the entity’s attribute data, depending on what you are trying to read. GENESYS also has the ability
to relate entities in one project to entities in another project. The entities referenced in another project will
follow a different naming convention than the entities in the project that you are working on.

The other major way of navigating the GENESYS model is by navigating the relationships between entities.
The entities and their relationships form a graph which can be navigated.

Repository

Projects

Folders

Entities
Attributes

Properties

Relationships

Client Model

Parameters

If you attempt to read an attribute of
an entity you do not have permission
to read, the phrase “Insufficient
Privileges” will be returned.

Entity

Entity Entity

Entity

Getting Started with GENESYS™ API

 4

GOALS AND OBJECTIVES
This example revolves around the following user story:

As a nontechnical project stakeholder, I want to review and comment on my project’s
requirements without having to learn any systems engineering or the GENESYS tool. I
want to do this at my convenience.

To accomplish this, we will use the following screen to view requirements and any existing notes in turn,
adding notes if needed.

The dropdown at the top will allow the user to select any project the user has permissions to view. The
“Next” and “Previous” buttons at the bottom will allow the user to view each requirement in sequence. The
“View” button will allow the user to view the details of the note listed on its left. And the “Add” button will
create a new note. The dialog presented to view/add a note is shown below.

Name of requirement

Select Project

Description of requirement

Add a note

View a note

Navigate requirements

Note Name

User Note

Note Number

Getting Started with GENESYS™ API

5

LOGGING INTO GENESYS
The first task we need to do to accomplish our user story is to log our user into a GENESYS repository.
The different repositories on your network are located using a host machine name and a host machine port.

The following code shows the steps needed to obtain a valid RepositoryConfiguration object. This is
the root object allowing access to the GENESYS repository which then gives you all you need to access
the GENESYS repository to which you have just connected.

Allows user to select different repositories
by entering the host’s machine name

The default port is 39121 and is rarely changed.
If you have difficulty accessing a remote
repository, check the firewall on both machines. If
that does not help, verify the GENESYS service’s
default port by looking at the DefaultPort tag in
the GenesysService.exe.config file located in the
main GENESYS installation directory.

Getting Started with GENESYS™ API

 6

Located in File LoginDialog.cs, method btnLogin_Click().

private void btnLogin_Click(object sender, EventArgs e)
{
 string host = txtHost.Text.Trim();
 string userName = txtUser.Text.Trim();
 string password = txtPassword.Text;

 if (string.IsNullOrEmpty(userName) || string.IsNullOrEmpty(password) || string.IsNullOrEmpty(host))
 System.Windows.MessageBox.Show("A username and password must be specified.", "Login",

System.Windows.MessageBoxButton.OK, System.Windows.MessageBoxImage.Error);

 if(host.Equals("localhost"))
 { // Get the configuration for the local repository.
 repositoryConfig = client.GetKnownRepositories().LocalRepository;
 }
 else
 { // Get the configuration for a remote repository.
 ConnectionInfo connInfo = new ConnectionInfo(host, 39111, ConnectionInfo.ProtocolType.NetTcp);
 repositoryConfig = client.GetKnownRepositories().Add(connInfo, false, "remote", userName);
 }

 // Set the credentials.
 // NOTE: Currently this is hard coded to use GENESYS AuthenticationType.
 GenesysClientCredentials credentials = new GenesysClientCredentials(userName, password,

AuthenticationType.GENESYS);
 string errorMessage = null;

 try
 {
 // This operation will call the service to authenticate the user.
 repositoryConfig.Login(credentials);
 }
 catch(FaultException<UserNotFoundFault> dupFault) { errorMessage = "user not found"; }
 catch(FaultException<PasswordIncorrectFault> dupFault) { errorMessage = "bad password"; }
 catch(EndpointNotFoundException) { errorMessage = "Endpoint not found"; }
 catch(Exception ex) { errorMessage = "Invalid Login" + ex.Message; }

 if(errorMessage != null)
 {
 System.Windows.MessageBox.Show(errorMessage, "Login", System.Windows.MessageBoxButton.OK,

System.Windows.MessageBoxImage.Error);
 }
 else
 {
 this.DialogResult = DialogResult.OK;
 Close();
 }
}

Getting Started with GENESYS™ API

7

NAVIGATING THE GENESYS MODEL
Now that we have a RepositoryConfiguration object, the next thing needed for our story is to present
the user with a list of projects from which to choose. To do this in the Requirement Commenter Page, we
will display all projects in a repository and allow the user to select one from a drop-down box. The code to
retrieve a list of projects from the repository is shown below.

Located in File RequirementCommenterDialog.cs, method LoadProjectList().

//Get repository from our configuration object
Repository repository = Globals.RepositoryConfig.GetRepository();
cmbProjectList.DataSource = repository.GetProjects(); // works w/ data binding

The user selects one of the projects from the combo-box, and our next job is to read all Requirements
from the selected project and add them to our class requirements list m_requirements. We will do this by
stepping down the tree structure illustrated in figure {x}. We have already navigated down to the project
level, so from there we will retrieve the folder holding all of the Requirement entities, and then query that
folder for all of the entities it contains.

There are several ways of referencing entities in GENESYS. In this example we’ll start with the most direct
method—referencing by name. The code required to reference all the entities from the Requirement class
is below:

Located in File RequirementCommenterDialog.cs, method Project_Changed().

// Here's how to get a project with a project name
// string projectName = cmbProjectList.SelectedItem.ToString();
// Repository repository = Globals.RepositoryConfig.GetRepository();
// IProject project = repository.GetProject(projectName);

IProject project = cmbProjectList.SelectedItem as IProject; // we're using databinding
if (project == null)
 return;
IFolder requirementsFolder = project.GetFolder("Requirement"); // Get requirements folder in that
project
// Load all requirements in this folder
m_requirements.Clear();
m_requirementIndex = 0;
foreach(IEntity req in requirementsFolder.GetEntities())
{
 m_requirements.Add(req);
}

DisplaySelectedRequirement();

Getting Started with GENESYS™ API

 8

READING A GENESYS ENTITY
We are now at the point in our story where we can start reading individual requirements from our user’s
project and displaying them to him. The next section shows how to read some of the commonly used
information associated with GENESYS entities.

Individual requirements are entities of the Requirement class. Entities contain information in the form of
attributes, properties, parameters, and relationships. The name attribute is somewhat special as it has its
own accessor method as shown here from the DisplaySelectedRequirements method:

Located in File RequirementCommenterDialog.cs, method DisplaySelectedRequirement().

IEntity req = m_requirements[m_requirementIndex]; // get selected requirement
lblRequirementName.Text = req.GetName(project); // gets full name
// Or just this if you don't care about cross-project extensions
// lblRequirementName.Text = req.Name;

Other attributes have no special accessor, and must be accessed differently. In the following example, we
are retrieving the string value of the description attribute for the requirement as retrieved above:

Located in File RequirementCommenterDialog.cs, method DisplaySelectedRequirement().

// Add description of the requirement ---------------------------------

string description = req.GetAttributeValueString("description");
rtbDescription.Text = description;

Another way of navigating the GENESYS model is by following the relationships between entities. In the
following example, we have the ability to get all Notes connected to a specific Requirement via the has
comments relation.

Name may not be unique within a model class, depending on how the project was set up when it was
created. It is recommended for displaying an entity’s name to the user, but generally not for uniquely
identifying an entity. The entity’s ID is unique within the GENESYS model, and the ID is recommended
as the way to uniquely identify an entity.

It is important to draw a distinction here between names and aliases in GENESYS. Localizations and
minor schema naming deviations between engineering disciplines are handled in GENESYS by giving
the user the ability to create aliases for all classes and class datum names. Many times there is no
alias for a class or its associated data, so these are one and the same. When there is an alias, it will be
displayed in the GENESYS client. If you try to use the alias to access the entity’s data, you will get an
error. The easiest way to see if an entity class or any of its associated data has been aliased is to view
the schema in the GENESYS client.

Getting Started with GENESYS™ API

9

In the GetRelationshipTargets call below, we are requesting that Requirement entity req return all entities
which are targets of the has comments relation, of which it is the source.

Located in File RequirementCommenterDialog.cs, method DisplaySelectedRequirement().

// Add concerns to requirement ---
// Specifically Requirements related to Concerns via the “has comments” relationship

lstvNotes.Items.Clear();
IEnumerable<IEntity> notes = req.GetRelationshipTargets("has comments");
foreach(IEntity note in notes)
{
 ListViewItem item = lstvNotes.Items.Add(note.DisplayName);
 item.Tag = note.Id; // store GUID of note for easy retrieval
}

It is important to note that relationships have bidirectionality: Relationships consist of a pair of inverse
relations. So the has comments/comments on relationship consists of the has comments relation and its
inverse, the comments on relation. The schema of a project determines which types of entities are valid
sources and targets of each particular relation in the relationship. The has comments relation is in the base
schema, and we know it has only one target entity type: Note. If there were more than one type of entity
which could be a target of the has comments relation, we would need to remove those from the entity list
returned by the GetRelationshipTargets call if we only wanted a list of Notes.

CREATING A GENESYS ENTITY
The key part of the user story is allowing our user to comment on project requirements. We do this in
GENESYS by creating a Note entity and then linking it to the existing Requirement entity being commented
on by creating the appropriate relationship.

GENESYS entities are created into the model as model class objects such as Requirement, Component,
Note, Function, etc. Remember, folders hold particular model class types, so which model class is created
depends on which folder it is created in. Component entities are created in the Component folder or its
subfolders, Requirement entities in the Requirement folder or its subfolders, etc. A name is required when
creating a new entity; depending on how the project is set up in GENESYS, trying to create an object with
a name that already exists may or may not fail due to name uniqueness rules. To be safe, assume that
duplicate names will fail. When creating a new entity, the GENESYS API provides a facility to retrieve a
guaranteed unique name from a particular class.

REQUIREMENT

NOTE

Source Targets

Getting Started with GENESYS™ API

 10

Located in File RequirementCommenterDialog.cs, method buttonNoteAdd_Click().

//Get repository from our configuration object
IFolder notesFolder = project.GetFolder("Note"); // Get Notes folder in that project
String defaultName = project.GetDefaultEntityName(notesFolder.EntityDefinitionId);
IEntity newNote = null;
try
{
 newNote = project.CreateEntity(notesFolder, defaultName); // Create new note w/ default name
}
catch(FaultException dupFault)
{
 System.Windows.MessageBox.Show(dupFault.Message, "Create Entity", System.Windows.MessageBoxButton.OK,

System.Windows.MessageBoxImage.Error);
 return;
}

GENESYS entities are usually connected to other entities in the model via relationships. In our case, the
requirement has comments of a new Note, so it is important to reflect that in the model. To do that we will
create a new relationship using the has comments relation in the project between the Requirement and
the Note. The following code continues the segment above and creates the new relationship by providing
the CreateRelationship(…) call with the “has comments” relation, the source entity (the user-selected
requirement); and the target entity we just created:

Located in File RequirementCommenterDialog.cs, method buttonNoteAdd_Click().

// Connect note to our requirement using the generates Relationship
IEntity req = m_requirements[m_requirementIndex]; // get selected requirement
Try
{
 project.CreateRelationship(project.Schema.GetRelationDefinition("has comments"), req, newNote);
}
catch(FaultException fault)
{
 System.Windows.MessageBox.Show(fault.Message, "Create Relation", System.Windows.MessageBoxButton.OK,

System.Windows.MessageBoxImage.Error);
 return;
}

Notice that in the CreateRelationship(…) call above we could have used a relationDefinitionConstant
instead of calling project.Schema.GetRelationDefinition(…) to retrieve a relationship definition. Use the
constant when referring to a relation that is part of the GENESYS-defined schema. You must use the
project.Schema.GetRelationDefinition(…) call when retrieving a custom relation definition that is not part of
the predefined base schema.

When working in GENESYS, it is important to note the difference between a relation and a
relationship. A relationship is made of a pair of inverse relations. When you create the relationship
above using the has comments relation, the inverse relation, comments on, is also created in the
database. So the Requirement has comments of a NOTE at the same time the Note comments on the
Requirement. This is important when calling GetTarget() or GetSource() on a relationship to retrieve
the entity at the other end.

Getting Started with GENESYS™ API

11

MODIFYING A GENESYS ENTITY
Our user is almost done with adding his comment to the project model. The final step is adding the user’s
comment text to the comment object we created above. When the Note entity was created, all its attributes,
parameters, and properties were set to their default values. The following code shows how to set a named
attribute of an entity:

Located in File NoteDialog.cs, method SetEntityAttributeStr().

 private void SetEntityAttributeStr(IEntity entity, String Attr, String attrVal)
 {
 IEntityAttributeValue av = entity.Attributes[Attr];
 DataTypeDefinition typeDef = av.AttributeDefinition.DataType;
 object outVal;
 if (typeDef.TryConvertValue(attrVal,out outVal))
 av.SetValue(outVal);
 else
 MessageBox.Show("Attribute conversion failed.");
 }

Also very important to note here is that the Update() method must be called to write any changes made to
an entity to the model as done here when the user clicks OK:

Located in File NoteDialog.cs, method OkBtn_Click().

private void OkBtn_Click(object sender, EventArgs e)
{
 try
 {
 m_Note.Update(); // force write to db
 }
 catch (FaultException<InsufficientPrivilegesFault> fault)
 {
 System.Windows.MessageBox.Show(fault.Message, "Set Entity Attribute",

System.Windows.MessageBoxButton.OK, System.Windows.MessageBoxImage.Error);
 return;
 }

 this.Close();
}

While our example does not allow the user to delete entities from the model, this can be accomplished by
calling the Delete() method on an entity for which you have delete privileges.

Getting Started with GENESYS™ API

 12

LOGGING OUT OF GENESYS
Remember to log out of the GENESYS repository before switching repositories or when your code exits.
The following code shows how to gracefully log out from the GENESYS repository.

Located in File NoteDialog.cs, method OkBtn_Click().

try
{
 if(Globals.RepositoryConfig != null)
 {
 if(Globals.RepositoryConfig.Status == Vitech.Genesys.Common.AvailabilityStatus.Available)
 {
 Globals.RepositoryConfig.Logout();
 }
 Globals.RepositoryConfig = null;
 }
 Globals.Client = null;
}
catch(Exception)
{
 MessageBox.Show("Failed to logout of the GENESYS client");
}

DEPLOYMENT
Finally we come to the last part needed to complete our user story—deploying the new API application to
our user.

The first thing needed to install a GENESYS API application is the licensing runtime service. If the machine
has a GENESYS product installed on it, it will already have this installed. If not, you will need to install it.
Again, the easiest way of doing this is by installing the latest GENESYS edition. If this is not possible, the
runtime service can be downloaded from the Vitech website here: https://vitechcorp-
webdownload.s3.amazonaws.com/support/Sentinel_LDK_Run-time_setup_823.zip.

You will also need a valid GENESYS license. If the machine you are installing on is connected to other
machines with a valid license, you will be able to use one of these. If your machine is not so connected,
you will have to install a license locally. You will need the GENESYS License Manager to switch between
local and remote licensing modes.

If the licensing service is correctly installed, you will be able to browse to http://localhost:1947 on the
machine and see a list of all licenses available.

The simplest way to deploy is to include the executable and all the linked .NET dlls in one folder. Copy the
entire folder on the user’s machine and provide a shortcut to the executable.

WHERE TO FIND FURTHER HELP
The additional samples in the Samples\API Samples directory demonstrate a WPF style example and a
web service example and may be a better starting point for your particular application.

If you are a visual learner, you might try Vitech’s API webinars series which can be found on Vitech’s
website under Support (https://www.vitechcorp.com/webinar-videos-on-demand/).

When exiting GENESYS it is important to use the Dispose() method so that licenses, sessions, and
other resources can be reused as soon as possible.

https://vitechcorp-webdownload.s3.amazonaws.com/support/Sentinel_LDK_Run-time_setup_823.zip
https://vitechcorp-webdownload.s3.amazonaws.com/support/Sentinel_LDK_Run-time_setup_823.zip
http://localhost:1947/
https://www.vitechcorp.com/webinar-videos-on-demand/

Getting Started with GENESYS™ API

13

APPENDIX A: PREREQUISITES, ASSEMBLIES, AND CONFIGURATION

.NET Framework Prerequisites
GENESYS is built via Microsoft’s .NET 4.8 framework and API applications must utilize the .NET 4.8 or
greater runtime to directly reference and use GENESYS API assemblies. For applications using .NET
runtimes that are versioned prior to 4.8, service-based approaches can be used.

Sample API projects are available in your GENESYS install directory’s Sample folder to assist in
understanding key API methods, properties, and techniques. The GENESYS samples provide Microsoft
Visual Studio® 2017 solution and project files.

Key GENESYS API Assemblies
Several assemblies are available for reference, offering comprehensive public interfaces to project model
data. For full descriptions of public assembly methods, properties, and other functionality, please visit the
API reference in the GENESYS online help files.

Vitech.Genesys
Required for API application development. The Vitech.Genesys assembly provides GENESYS product and
version data. While it may or may not be used explicitly, it is required by other API assemblies.

Vitech.Genesys.Client
Required for API application development. The Vitech.Genesys.Client assembly is the workhorse for
working with repository data. It provides access to key data structures such as repositories, projects,
folders, entities, attributes, and relationships, as well as to schema meta-data such as entity definitions,
relation definitions, and attribute definitions. It also contains repository connection and authentication
functionality.

Vitech.Genesys.Common
Required for API application development. The Vitech.Genesys.Common assembly contains key
enumerations and constants that are used throughout the application, such as entity definition identifiers
and type descriptors. It also contains definitions used to convert values to GENESYS types, as well as
exception classes specific to GENESYS actions. While it may or may not be used explicitly, it is required
by other API assemblies.

Vitech.Genesys.Logging
Required for API application development. The Vitech.Genesys.Logging assembly contains the ability to
read warnings and errors from other Vitech assemblies. Logging levels are set in the App.config (see
below). While it most likely would not be used explicitly, it is required by other API assemblies.

Vitech.Genesys.Random
Required for API application development. The Vitech.Genesys.Common assembly hosts algorithms and
other functionality used across the GENESYS framework. While it most likely would not be used explicitly,
it is required by other API assemblies.

Licensing Assemblies
The GENESYS licensing assemblies would typically not be used directly for API application development
efforts. However, they provide licensing services and validation for the GENESYS framework and are
required references for an API application.

Getting Started with GENESYS™ API

 14

Note that while GENESYS API assemblies are compiled for “Any CPU,” some licensing functions require
independently compiled 32-bit and 64-bit versions. Including both versions in an application will ensure it
works seamlessly in either environment.

1) Vitech.Genesys.License

2) Vitech.Genesys.License.Provider

3) hasp_net_windows

4) hasp_windows_82194

hasp_windows_x64_82194

5) apidsp_windows
apidsp_windows_x64

Note: The Sentinel HASP .dll’s (#3 – 5) must each be output as a file with your API application. They should
not be directly referenced. Instead, they should each simply be added to a .NET GENSYS API project as
existing files. Each .dll’s “Build Action” property should be set to “Content” and its “Copy to Output Directory”
property should be set to “Copy if newer.”

App.config
An API application’s app.config file should contain the following nodes in the appSettings section.

• The LoggingLogLevel value provides different levels of transaction and error reporting. Possible
logging levels are: off, error (default value), info, and verbose.

• The ProductCode value provides information to the GENESYS services that is required to
authenticate a user’s license against the GENESYS version in use.

<appSettings>

<add key="LoggingLogLevel" value="Off"/>
 <add key="ProductCode" value="G03"/>
</appSettings>

Upgrading to a new version
The version of the GENESYS DLL files included in the API project should match the GENESYS installation
where the API is being used. Therefore, when upgrading your GENESYS installation, remember to copy
over the following files into your solution:

• apidsp_windows.dll
• apidsp_windows_x64.dll
• hasp_net_windows.dll
• hasp_windows_82194.dll
• hasp_windows_x64_82194.dll
• Vitech.Genesys.Client.dll
• Vitech.Genesys.Common.dll
• Vitech.Genesys.dll
• Vitech.Genesys.License.dll
• Vitech.Genesys.License.Provider.dll
• Vitech.Genesys.Logging.dll
• Vitech.Genesys.Random.dll

Getting Started with GENESYS™ API

15

THIS PAGE INTENTIONALLY BLANK

2270 Kraft Drive, Suite 1600
Blacksburg, Virginia 24060

540.951.3322 FAX: 540.951.8222
Customer Support: support@vitechcorp.com

www.vitechcorp.com

mailto:support@vitechcorp.com
https://www.vitechcorp.com/

	Getting Started
	Note to Programmers
	Basic GENESYS Architecture
	Basic GENESYS Data Structures Overview
	Goals and Objectives
	Logging Into GENESYS
	Navigating the GENESYS Model
	Reading a GENESYS Entity
	Creating a GENESYS Entity
	Modifying a GENESYS Entity
	Logging Out of GENESYS
	Deployment
	Where to Find Further Help
	APPENDIX A: PreRequisites, Assemblies, and Configuration
	.NET Framework Prerequisites
	Key GENESYS API Assemblies
	Vitech.Genesys
	Vitech.Genesys.Client
	Vitech.Genesys.Common
	Vitech.Genesys.Logging
	Vitech.Genesys.Random

	Licensing Assemblies
	App.config
	Upgrading to a new version

