

Simulator
User Guide

ii

Copyright © 2009-2022 Zuken Vitech Inc. All rights reserved.

No part of this document may be reproduced in any form, including, but not limited to, photocopying,
language translation, or storage in a data retrieval system, without Vitech’s prior written consent.

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in the applicable
GENESYS End-User License Agreement and in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause at DFARS 252.277-7013 or subparagraphs (c)(1) and (2) of the Commercial
Computer Software - Restricted Rights at 48 CFR 52.227-19, as applicable, or their equivalents, as may
be amended from time to time.

Zuken Vitech Inc.
2270 Kraft Drive, Suite 1600
Blacksburg, Virginia 24060

540.951.3322 | FAX: 540.951.8222
Customer Support: support@vitechcorp.com

www.vitechcorp.com

is a trademark of Zuken Vitech Inc. and refers to all products in the GENESYS
software product family.

Other product names mentioned herein are used for identification purposes only, and may be trademarks
of their respective companies.

Publication Date: August 2022

mailto:support@vitechcorp.com
https://www.vitechcorp.com/

Simulator User Guide

iii

TABLE OF CONTENTS

Preface ... vii
1 GENESYS Simulator – Dynamic Verification Simulator ... 1

1.1 Modeling and Simulation with GENESYS .. 2
1.2 Open Simulator ... 4
1.3 Simulator Window ... 5
1.4 Transcript Pane ... 9
1.5 Execution Hierarchy Pane .. 10
1.6 Database Entities Pane .. 10
1.7 Simulation Entities Pane ... 11
1.8 Simulator Preferences .. 12

2 Introduction to Behavior ... 15
2.1 Function Flow Block Diagrams (FFBDs) .. 15
2.2 Enhanced FFBDs / Activity Diagrams... 16
2.3 Behavior Elements .. 18
2.4 NumberSpec ... 23
2.5 ScriptSpec ... 24

3 Control Constructs .. 27
3.1 Parallel .. 27
3.2 Select .. 27
3.3 Multi-Exit Function .. 28
3.4 Exit Node .. 28
3.5 Loop .. 28
3.6 Loop Exit ... 29
3.7 Iterate .. 29
3.8 Replicate ... 29

4 Using the GENESYS Simulator .. 31
4.1 Basic Constructs ... 31
4.2 Items in Models ... 35
4.3 Iterations ... 37
4.4 Multi-Exit Functions... 39
4.5 Selection Probabilities .. 40
4.6 Multiple Levels .. 42
4.7 Loop .. 45
4.8 Loop Exit ... 46
4.9 Replicate ... 47
4.10 Kill Branch ... 48
4.11 Executing a Model with Links and Items .. 50
4.12 Execution Order .. 54
4.13 Resource execution order ... 54

5 Adding Resources .. 57
5.1 Executing a Model with Resources ... 57

6 Enhancing the Simulator Model Using Scripting .. 61
6.1 Script Basics ... 61
6.2 Model Access from Script Basics ... 62
6.3 GENESYS Application Programmer’s Interface ... 65

Appendix A - GENESYS Simulator Distributions .. 67
Appendix B - Transcript Window Content Description .. 75

Simulator User Guide

iv

LIST OF TABLES

Table 1 Timeline Window Color Codes ... 7
Table 2 Transcript Window Contents .. 10
Table 3 Function Entity Attributes ... 18
Table 4 Item Attributes .. 20
Table 5 Link Attributes .. 20
Table 6 DomainSet Attributes ... 21
Table 7 Exit Attributes ... 21
Table 8 Resource Attributes .. 22
Table 9 NumberSpec Attributes .. 23
Table 10 ScriptSpec Attributes ... 25
Table 11 Random Variable Definitions ... 68

LIST OF FIGURES

Figure 1 Example of an Enhanced Functional Flow Block Diagram ... 2
Figure 2 Simulation Timeline... 3
Figure 3 Opening the Simulator Display Window from the Toolbar .. 4
Figure 4 Opening the Simulator Display Window from the Activity Diagram .. 4
Figure 5 The Simulator Display Window ... 5
Figure 6 Simulator Window and Timeline Pane .. 6
Figure 7 Timeline Controls On Simulator Ribbon ... 8
Figure 8 Transcript Pane in the Simulator Window .. 9
Figure 9 Database Entities Pane .. 11
Figure 10 Simulation Model Pane ... 11
Figure 11 User Simulator Preferences .. 12
Figure 12 Project Simulation Preferences .. 12
Figure 13 User Random Distribution Preferences .. 13
Figure 14 User Random Stream Preferences ... 13
Figure 15 A Function Flow Block Diagram .. 15
Figure 16 Enhanced Function Flow Block Diagram .. 16
Figure 17 Activity Diagram .. 16
Figure 18 NumberSpec Type Selector Window .. 23
Figure 19 Script Editor Window .. 24
Figure 20 Single Function ... 31
Figure 21 Single Function Simulation Results .. 31
Figure 22 Sequence of Three Functions ... 32
Figure 23 Multiple Functions Simulation Results .. 32
Figure 24 Select Construct .. 33
Figure 25 Select Construct Simulation Results ... 33
Figure 26 Parallel Construct.. 34
Figure 27 Parallel Construct Simulation Results .. 34
Figure 28 A Data Store Item ... 35
Figure 29 Input Item Simulation Results ... 36
Figure 30 A Data Trigger ... 36
Figure 31 Trigger Item Simulation Results .. 37
Figure 32 An Iterate Construct .. 38
Figure 33 Iterate Construct Simulation Results .. 38
Figure 34 A Multi-Exit Function Construct .. 39
Figure 35 Multi-Exit Function Construct Simulation Results ... 40
Figure 36 Multi-Exit Function Construct with Selection Probabilities .. 41
Figure 37 Multi-Exit Function with Selection Probabilities Simulation Results ... 42

Simulator User Guide

v

Figure 38 Second Function Decomposed ... 42
Figure 39 Model Containing Decomposition ... 43
Figure 40 Results of Model Containing Decomposition .. 44
Figure 41 Execute Decomposition Set to False .. 45
Figure 42 Loop Construct .. 45
Figure 43 EFFBD with Loop and Loop Exit ... 46
Figure 44 Results for Model with Loop and Loop Exit .. 47
Figure 45 A Replicate Construct ... 47
Figure 46 Results for Model with A Replicate Construct .. 48
Figure 47 Model with Kill Branch .. 49
Figure 48 Simulation Results with Kill Branch .. 50
Figure 49 Link Schema Diagram .. 50
Figure 50 Link-Item Model .. 51
Figure 51 Simulation Results with Item Size = 0.0, Link Capacity = 1000.0, Delay = 0.0 52
Figure 52 Simulation Results with Item Size = 1000.0, Link Capacity = 1000.0, Delay = 0.0 52
Figure 53 Simulation Results with Item Size = 1000.0, Link Capacity = 1000.0, Delay = 0.5 53
Figure 54 Loop Model with Insufficient Resources ... 58
Figure 55 Loop Model with Adequate Resources ... 58
Figure 56 Loop Exit Model with Trigger-Type Resource .. 59
Figure 57 Edit ScriptSpec Window ... 61

Simulator User Guide

vi

CUSTOMER RESOURCE OPTIONS

Supporting users throughout their entire journey of learning model-based systems engineering (MBSE) is
central to Vitech’s mission. For users looking for additional resources outside of this document, please refer
to the links below. Alternatively, all links may be found at www.vitechcorp.com/online-resources/.

Webinars

Immense, on-demand library of
webinar recordings, including
systems engineering industry
and tool-specific content.

Screencasts

Short videos to guide users
through installation and usage of
GENESYS.

A Primer for Model-Based

Systems Engineering

Our free eBook and our most
popular resource for new and
experienced practitioners alike.

Help Files

Searchable online access to
GENESYS help files.

Technical Papers

Library of technical and white
papers for download, authored
by Vitech systems engineers.

Technical Support

Frequently Asked Questions
(FAQ), support-ticket web form,
and information regarding email,
phone, and chat support options.

Our team has also created resources libraries customized for your experience level:

All Resources Advanced

Beginner IT / Sys Admin

Intermediate Student

https://www.vitechcorp.com/online-resources/
https://www.vitechcorp.com/webinar-videos-on-demand/
https://www.vitechcorp.com/genesys-screencasts-on-demand/
https://www.vitechcorp.com/mbse-primer/
https://www.vitechcorp.com/mbse-primer/
https://www.vitechcorp.com/resources/GENESYS/onlinehelp/desktop/
https://www.vitechcorp.com/technical-papers/
https://www.vitechcorp.com/technical-support/
https://www.vitechcorp.com/online-resources/
https://www.vitechcorp.com/resources-for-advanced-users/
https://www.vitechcorp.com/resources-for-beginners/
https://www.vitechcorp.com/resources-for-it-and-systems-administrators/
https://www.vitechcorp.com/resources-for-intermediate-users/
https://www.vitechcorp.com/resources-for-students/
http://www.vitechcorp.com/webinars
http://www.vitechcorp.com/screencasts
http://www.vitechcorp.com/mbseprimer
http://www.vitechcorp.com/resources/GENESYS/onlinehelp/desktop/
http://www.vitechcorp.com/technicalpapers
http://www.vitechcorp.com/MySupport/support/default.aspx

Simulator User Guide

vii

PREFACE

The purpose of this guide is to provide the user with an understanding of the features and behavior of the
GENESYS™ simulator, the discrete event simulator that is part of the GENESYS product suite.

The views in the guide reflect the latest version of GENESYS.

This guide assumes the user has attended the "Model-Based Systems Engineering with GENESYS" course
offered by Vitech and has been introduced to the basics of GENESYS and the simulator. This document is
intended to reinforce this basic information and provide more detailed instruction on the GENESYS
simulator.

This document is organized into six sections.

• Section 1 provides an introduction to the GENESYS simulator followed by a discussion of the
various commands the user will need in order to use the simulator.

• In Section 2 modeling of behavior is discussed; this section discusses the GENESYS entity classes
and their associated attributes that are necessary to model this behavior.

• Section 3 provides the user with a refresher on the various control constructs used in the simulator.
• Section 4 provides behavior response examples in the form of simulator timelines. Starting with

simple examples, complexity is added to demonstrate the behavior of all of the constructs described
in Section 3.

• Section 5 focuses on the use of resources in behavior model.
• Lastly, Section 6 provides a brief introduction to the use of Microsoft Visual Basic for scripting within

the GENESYS simulator.

The following conventions are used throughout this guide to aid the user:

Example Description
Function Entities
Duration Attributes
consumed by Relationships
true User Selections and Input
File > Import Reference Documents,

GENESYS Commands,
Buttons, Icons, or Tabs

Simulator User Guide

viii

THIS PAGE INTENTIONALLY BLANK

Simulator User Guide

1

1 GENESYS SIMULATOR – DYNAMIC VERIFICATION SIMULATOR
To completely define a system, one must precisely specify the behavior model detailing the functional and
control flows, the inputs and outputs, the physical architecture model, and the performance model.

The inputs to this process include requirements, and the outputs include a system design model. The
system design model must satisfy all the requirements in a logical manner so that the system is dynamically
consistent. If the behavioral model is flawed and not corrected during the initial design stages, problems
will likely multiply during development. Inevitably, when achievement of dynamic consistency is left until the
end of a project (during integration and testing), it is the least attainable and the most costly to correct. An
automatically generated dynamic verification simulator can help identify flaws early in the development
cycle.

The GENESYS simulator is a simulation engine that provides this automatic dynamic verification of
operational and/or functional behavior models constructed as part of a system, architecture, program, or
process definition in GENESYS. The GENESYS simulator provides the ability to evaluate designs from two
perspectives:

1. Correct logical behavior. Verify that the design as modeled will in fact execute logically and that

activities and functions will occur in the sequence intended. This is of particular importance as an
architecture or system design grows more complicated with multiple layers of decomposition and many
parallel tasks. As designs grow more complex, it becomes difficult or impossible to validate logical
behavior through visual inspection alone. Execution of behavior in the GENESYS simulator can and
should be a significant contributor to the task of verification of your logical designs.

2. System/architecture performance. Real-world limitations on (and competition for) resources,

architecture design selection and functional allocation can all act to constrain the overall performance
of a chosen solution. These constraints can be captured in the GENESYS model and their aggregate
effects on performance evaluated by executing behavior models in the GENESYS simulator. Process
queuing, resource utilization, and communications bandwidth are some of the examples of what can
be seen across a timeline, with the results utilized to correct and/or optimize architecture and system
designs.

A fundamental benefit of using the GENESYS simulator is the automatic generation of a simulation from
the system operational or functional model ensuring that the simulation model and system functional model
remain consistent. If changes are made to the simulator, those changes are automatically reflected in the
system model. This differs from classic stand-alone simulators in which the simulation itself is tuned with
changes often not reflected in the system specification. The net result is virtual prototyping at the system
level directly from the system model.

Simulator User Guide

2

1.1 Modeling and Simulation with GENESYS
This guide provides information on the GENESYS simulator, an option available to enhance the GENESYS
systems engineering and architecting tool. The guide assumes some understanding of the concepts of
systems engineering, architecting, and functional modeling as well as a basic familiarity with GENESYS
commands. Additional background on these concepts can be found in the GENESYS System Definition
Guide, GENESYS Architecture Definition Guide, and GENESYS Guided Tour.

The GENESYS simulator provides the capability to simulate behavior – whether represented by activity
diagram, Enhanced Functional Flow Block Diagram (EFFBD), or any other behavior representation – in
order to analyze the dynamic performance and behavior of your system‘s functional model. The term
“Functional” in this case is a broad term used to describe the type of diagram. In GENESYS this type of
diagram is used to model behavior for system Functions, Operational Activities, Test Activities, and
Program Activities, entities of the GENESYS classes Function, OperationalActivity, TestActivity, and
ProgramActivity, respectively. In subsequent examples, “Function” can be assumed to also mean
“Operational Activity” (for architecture development), “Test Activity” (applicable for testing management), or
“Program Activity” (applicable for program management modeling). With the GENESYS simulator, you can
directly assess resource availability, verify the functional logic, and assess system performance and
resource utilization using the behavior specification of your system.

The Enhanced Functional Flow Block Diagram, shown in Figure 1, provides a basis for establishing a multi-
layered process model. These models represent sequential, parallel, repetitive, and decision logic used to
depict system behaviors. A simulator may be opened for any functional model – complete or incomplete,
interim, or final – and run.

Figure 1 Example of an Enhanced Functional Flow Block Diagram

The simulator identifies the discrete events that occur during the simulation execution and constructs a
timeline that depicts:

Simulator User Guide

3

• Functional activation, sequential, parallel, or triggered execution, and duration
• Wait states
• Resource inventory history
• Branching selection (based upon random probabilities, or specified criteria)
• Queuing triggers (input items waiting to be processed by functions)

The GENESYS simulator generates a timeline for execution and identifies when Functions are initialized,
how long they wait for a triggering (Item) or Resource to be available, the time it takes to perform a
Function, and which paths or branches are taken based upon specified probabilities. Figure 2 illustrates
the simulation timeline for the EFFBD shown in Figure 1.

Figure 2 Simulation Timeline

The next sections describe how to run the GENESYS simulator and describe the details of the various
simulator windows.

Simulator User Guide

4

1.2 Open Simulator
The simulator executes the behavior of a function.

A simulator can be opened using either of the following methods:

In the Project Explorer, select the Function, or the related Component1 or OperationalNode, to be
dynamically analyzed by the simulator, then from the Home ribbon click the Simulator button as shown in
Figure 3.

Figure 3 Opening the Simulator Display Window from the Toolbar
or

Click the Simulator icon on the Diagram ribbon of an activity diagram, FFBD, EFFBD, IDEF0, or
sequence diagram opened on the top-level function of interest as shown in Figure 4.

Figure 4 Opening the Simulator Display Window from the Activity Diagram

1 When a Component or OperationalNode entity has a Function related to it using the performs relation
with the Function’s attribute Behavior Type set to Integrated (Root), the simulator will dynamically analyze
that Function.

Simulator User Guide

5

When the simulator is first opened, the simulator window will appear. As shown in Figure 5, the simulator
window includes a ribbon with a Simulator tab and a Views tab. The simulator window includes the timeline
pane and, depending on the user preference settings, the transcript pane. The timeline pane is the primary
pane and independent of the transcript pane. If desired, the transcript pane may be closed without closing
the timeline pane. However, if the simulator window is closed, all the associated simulator panes are also
closed. The features of each of these panes will be discussed in detail in the following subsections.

The simulator window is associated with the Function for which the simulator was opened. Thus, more
than one simulator window can be open at a time, each window associated with a particular Function. The
label on the top line of the simulator window identifies this Function.

Figure 5 The Simulator Display Window

1.3 Simulator Window
Figure 6 shows the simulator window. The primary area of display within this window is the actual simulation
timeline. In addition to the timeline, the simulator window also includes the Simulator ribbon containing the
simulator control buttons. The simulator timeline displays what is happening over the course of a simulation
run.

Depending on both the entities contained in the model and objects selected by the user, the timeline will
display Functions as they occur during the execution of a behavior model, levels of Resources that are
utilized during the simulation run, queuing of triggering Items waiting to be processed by a Function, and
the throughput of Links in terms of the Capacity attribute.

The timeline pane is subdivided into two panels. On the left side, there is a listing of any Resources used
in the model, the Functions as they are encountered, Link capacity, and any Item queue, depending on
entities selected to appear by the user and in the order edited by the user. On the right side, the events or
status are displayed chronologically in the simulation timeline for each of these entities listed. Note, the
timeline will not list Functions that are not executed because of the deterministic or probabilistic logic that
controls branching or exit selection.

Simulator User Guide

6

Figure 6 Simulator Window and Timeline Pane

When a simulation is run, colored duration bars will appear in the timeline. The GENESYS simulator uses
these colors to distinguish between different types of events. Table 1 describes the color codes. These will
make more sense as the types of events are described in a model execution in Sections 3 and 4.

Timeline Output
GENESYS allows simulation timelines to be viewed, printed and/or saved to a file. Timelines can be saved
as PNG, JPEG, Bitmap, GIF, TIFF or XPS files.

Simulator User Guide

7

Table 1 Timeline Window Color Codes

 Teal The Function is executing after obtaining any needed Resources and without
having to wait for a triggering Item.

 Bright
 Green The Function is executing after the triggering Item(s) arrived.

 Yellow The Function is enabled but it has not yet initiated execution. It is waiting for a

triggering Item.

 Magenta The Function is enabled but waiting for Resources.

 Diagonal The Function is decomposed and its behavior is being executed.

 Grey The amount of Resource available. This varies as it is consumed, captured, or

produced by a Function.

 Red The amount of Resource reserved for a Function. The Resource Amount
Available is not sufficient to enable the function to execute.

 Turquoise

A triggering Item has arrived and the triggered Function is not enabled
resulting in queuing of the Item. The triggering Item is displayed just above the
triggered Function.

1.3.1 Simulator Ribbon
The commands in the simulator ribbon control the execution of the simulator. It is from here that the user
starts execution, steps through the execution, stops execution, and resets the simulator. The commands
are grouped into six sections: Save; Editing; Control; Timeline; Show; and Debug.

In the Save section:

 Save Timeline allows simulation timelines to be saved to a file. Timelines can be saved as PNG,
JPEG, Bitmap, GIF, TIFF or XPS files.

 Save Transcript allows the simulator transcript to be saved to a CSV file.

In the Editing section:

 Copy allows text to be copied from the panes, such as the Transcript pane.

 Find allows text in the panes to be searched.

 Select All enables all the text in a pane to be selected.

In the Control section:

 Run the simulation begins or continues execution of the Function’s behavior model.

 Step through the simulation advances the simulator to the time of the next event to occur as defined
by the behavior model and executes all events that occur at that time.

 Stop the simulation halts execution, particularly useful when in an undesired loop.

 Reset the simulation clears the simulator clock, the timeline window, and the transcript window in
preparation for a new run. The simulator must be reset before subsequent executions.

Simulator User Guide

8

The controls in the Timeline section, of the Simulator ribbon, allow the timeline pane to be configured by
the user. Options include changing the relative scale of the timeline, the order of appearance of the
elements used in the simulations, the relative sizes of the panes, and the time scale increment:

Figure 7 Timeline Controls On Simulator Ribbon

 Timeline Major Scale changes the time scale increment. The width of the timeline
displayed in the right-hand pane of the timeline window can be adjusted using the Timeline Major Scale
drop-down selection. The timeline is adjusted as a new setting is selected. Normal is the initial default
setting, but this default setting can be changed from the User Preferences (see User Simulation
Preferences). Different scales are possible depending on the situation. At times, it may be important to view
the details, in which case use the Large setting. At other times, it may be desirable to view the complete
timeline on the screen, in which case the Screen setting or the Small setting can be used.

 Timeline Minor Scale permits selecting the amount of timeline to display via a slide
bar.

 Timeline Increments allows the major and minor timeline tick increments to be changed by the user.
The default values can be set in the User Preferences (see User Simulation Preferences).

 Edit Order opens a dialog listing the entities in the timeline. Use the up-down arrows to change the
order of appearance of an entity in the timeline. The entities generally appear in the timeline list in the order
that they are encountered in simulation execution. It may be desirable to reorder the rows in the timeline
using the Edit Order dialog box. Re-ordering the list does not alter the order of execution but rather just
alters the display.

 Recompute Order returns the entities to their natural execution order. When a Function or Resource
is added to the list using the Database Entities pane (discussed in Section 1.6), the new entity will appear
at the bottom of the list of entities. Use Recompute Order to include the Function in the order in which it
was encountered.

 Deferred/Realtime Rendering button allows the user to choose whether the timeline is updated as
the simulation executes, in Realtime mode, or whether the timeline is displayed when the simulation has
finished executing, in Deferred mode. In Realtime, when a diagram is open, the nodes will highlight as the
simulation runs.

Simulator User Guide

9

In the Show section:
Transcript opens the simulation Transcript pane if it is closed.
Execution Hierarchy opens the simulation Execution Hierarchy pane if it is closed.
Database Entities opens the Database Entities pane to allow the user to select which entities are displayed
in the simulation timeline.
Simulation Entities opens the Simulation Entities pane if it is closed.
Blocked Events opens the simulation Blocked Events pane if it is closed.

In the Debug section:

 Debug places the simulator in Debug mode.

 Break All sets debugging break points in the simulation model.

Result Detail

The Result Detail area at the bottom of the simulator window provides the total duration, in elapse time
units, for the execution of the simulation.

1.4 Transcript Pane
The simulator transcript pane (Figure 8) displays each event that occurs during the simulation and the time
(on the simulator clock) when the event occurred. In general, the transcript records the time each event
occurred, the type of event (enabled, started, waiting for resources, etc.), and the number and name of the
entity involved in the event. The transcript pane provides a basis for understanding the detailed execution
of the behavior model. From this pane, you can review the detailed events as they occurred during the
execution of the simulator.

Figure 8 Transcript Pane in the Simulator Window

There are nine columns of data contained in the transcript pane. A brief description of each of these columns
is presented in Table 2; a more detailed explanation of the contents is contained in Appendix B.

Simulator User Guide

10

Table 2 Transcript Window Contents

Column Title Contents
1 Time A floating-point number showing the simulation time at which the event

occurred.

2 Event ID
Before an event can be executed at a scheduled time, it must first be added to
the schedule. As each primary event is created and added to the schedule, it is
assigned a sequential event ID, which is shown in Column 2.

3 Process ID
A process represents the execution of a branch in the model. Processes are
arranged in a parent-child hierarchy. Each process is assigned a sequential
hierarchical ID number based on the ID of the parent.

4 Event
Name

This column lists the event type. Many events are related to each other and
occur in pairs or higher-order groupings.

5 Construct
ID

When the GENESYS simulator builds a simulation model from a GENESYS
behavior model, each construct and branch in the simulation model is assigned
a unique ID. The fifth column lists the ID of the construct responsible for each
event.

6 Structure
If the event is executing a control construct, then the name of the structure being
processed is displayed in this column. If the event is processing an entity, then
this column is blank.

7 Number
If the event is executing an entity, then the number of the entity being processed
is displayed in this column. If the event is processing a structure, then this
column is blank.

8 Name
If the event is executing an entity, then the name of the entity being processed
is displayed in this column. If the event is processing a structure, then this
column is blank.

9
Event
Execution
Data

The format of ninth column depends on the Event Name and the type of
construct that generated the event. The possible execution data formats specific
to each kind of event are listed in Appendix B.

1.5 Execution Hierarchy Pane
The Execution Hierarchy pane contains the top-level function’s structure (and descendant structures)
shown as an indented hierarchy. You can expand or collapse a particular node by clicking the symbol to
the left of the node. A red flag shows branches, constructs, and Functions that have not been executed.
The flag turns green once the node is executed.

1.6 Database Entities Pane
The Database Entities pane (Figure 9) allows you to select the entities to be displayed in the timeline. For
instance, you can choose whether to show all the Resources in the model.

Simulator User Guide

11

Figure 9 Database Entities Pane

The Database Entities pane lists all Functions, Items, Links, and Resources included in the model. Check
the ones that you want to display in the timeline. By default, the User Preferences settings indicate which
classes of entities are automatically displayed.

The lists of entities on each of the Functions, Items, Links, and Resources tabs can be sorted according
to the criteria set using the drop-down menu in the lower right-hand corner of the pane.

1.7 Simulation Entities Pane
The Simulation Entities pane lists all Functions, Triggers (Items), Inputs (Items), Resources, and Links
in the model. This is different from the Database Entities pane in that you can choose whether to display
each occurring instance of an entity. This is particularly helpful when you want to focus on a particular
instance of an entity but do not care about the other instances. A [T] is used to identify the entities being
Tracked and hence displayed in the timeline window. Right-click on the entity to Set Track, Release Track,
or Toggle Track for the selected entity. This is useful when attempting to view the timeline that involves
many entities. By turning off the tracking of selected entities, the timeline can be customized to display only
those entities of interest.

Figure 10 Simulation Model Pane

Simulator User Guide

12

1.8 Simulator Preferences
There are some preferences that can be preset when working with the simulator. The preferences are
accessed from GENESYS > Preferences. These preferences do not change the current values, but when
a new simulator window is opened or a new entity is created, the preference settings can be used. In this
section the preferences related to the simulation will be addressed, as well as Random Number items.

The User Simulation preferences (Figure 11) allow users to select the GENESYS simulator panes the
user would like to automatically see when opening a simulator. [Note the timeline pane will always be open.]

The User Simulation preferences also allows classes of entities to be set that will initially be displayed in
the timeline pane. Users can also choose to display intermediate Functions (those Functions whose
decompositions are executed), set the initial scale, and set the initial tick increments. These default settings
will become the initial settings each time the simulator window is opened. However, all these values can
also be changed independently in the simulator timeline window once it is opened.

Figure 11 User Simulator Preferences

The Project Simulation preferences (Figure 12) allows Default Iterations to be set (the default number of
times an Iterate construct will loop) and the Default Duration (the default time units a Function executes).
For now, keep in mind default values can be set.

Figure 12 Project Simulation Preferences

Simulator User Guide

13

The User Random Distribution preferences (Figure 13) allows default values to be set when a random
distribution value is selected for the Function Duration. There will be more on this when the Duration
attribute and the NumberSpecs are discussed in Section 2. Keep in mind, every newly created Function
will have these default values when Random is selected from the Edit NumberSpec dialog window.

Figure 13 User Random Distribution Preferences

The User Random Streams preferences (Figure 14) allow repeatability to be assigned to an object. To
establish a repeatable simulation run, users must 1) assign a stream to each random duration or resource
amount that is of concern, and 2) establish and save a profile. The profile saves the seed upon which the
random number generator operates for each assigned stream and will cycle through each stream assigned
each time the simulator is executed. Use the up and down arrows to scroll through the 100 streams. Stream
[100] Branch is saved for branch selection logic.

Figure 14 User Random Stream Preferences

Simulator User Guide

14

THIS PAGE INTENTIONALLY BLANK

Simulator User Guide

15

2 INTRODUCTION TO BEHAVIOR
To completely define a system, the behavior model must be precisely specified detailing the functional and
control flows, the inputs and outputs, the physical architecture model, and the performance model.

GENESYS supports behavior analysis of a system or component of the system. The Function Flow Block
Diagrams (FFBDs) and Enhanced Function Flow Block Diagrams (EFFBDs) support specification of
required functional sequencing. The FFBD displays the control dimension of the behavior model, whereas
the EFFBD includes the data dimension of the integrated behavior model.

2.1 Function Flow Block Diagrams (FFBDs)
The Function Flow Block Diagrams (Figure 15) supported by GENESYS have the classic features of logic
structures and hierarchical representations. The constructs allow users to indicate the control structure and
sequencing relationships of all functions accomplished by the system being analyzed, including
concurrency, branching, iteration, and looping. With Boolean logic specified at decision points, these
FFBDs, in combination with the functions’ inputs and outputs, form an executable behavior model, allowing
dynamic validation via discrete event simulation methods.

Figure 15 A Function Flow Block Diagram

GENESYS also supports the standard hierarchical features of FFBDs, including the decomposition of a
function displayed as an FFBD at the next lower level.

Simulator User Guide

16

2.2 Enhanced FFBDs / Activity Diagrams
The Enhanced Function Flow Block Diagram and Activity Diagram represents the behavior for a system or
component of a system, as shown in Figure 16 and Figure 17. The EFFBD displays the control dimension
of the behavior model in an FFBD format with a data flow overlay to effectively capture behavior in a single,
synchronized view.

Figure 16 Enhanced Function Flow Block Diagram

Figure 17 Activity Diagram

Simulator User Guide

17

2.2.1 Triggers vs. Inputs
When displaying the data flow as an overlay on the control flow, GENESYS distinguishes between the two
primary types of Items - triggers and inputs. Items that control the execution of a Function by their
presence or absence are designated as triggers – targets of the inputs relationship with relationship attribute
Triggering set to True. A Function begins execution when it has received all of its triggers and its necessary
Resources have been acquired. Therefore, triggers are Items with control implications. Items that are not
triggers are designated as inputs – targets of the inputs relationship with relationship attribute Triggering
set to False. Inputs represent inputs to and outputs from Functions that are non-triggering and have no
effect on control.

To clearly represent the behavior of triggers and inputs, the following rules are applied when displaying
Items in GENESYS:

• Trigger Items
o Triggers are shown with green backgrounds by default.
o Triggers are globally connected with double-headed arrows at the sinks.

• Input Items
o Inputs have gray backgrounds by default.
o Inputs are globally connected with single-headed arrows at the sinks.

Simulator User Guide

18

2.3 Behavior Elements
The GENESYS classes that pertain to the behavior of the system are Function, Item, Link, DomainSet,
Exit, and Resource. The equivalent GENESYS classes of Function, Item, and Link that pertain to the
operational behavior of an architecture using the Department of Defense Architecture Framework (DoDAF)
schema are OperationalActivity, OperationalInformation, and Needline. In the discussions below, the
information provided applies to both the functional and operational classes and can be used by both the
Systems Engineer and Architect in developing and analyzing the functional and operational behaviors of
the system and architecture. For these classes, certain entity and relationship attributes determine how the
system performs, while other attributes are informational and pertinent to the system documentation. When
running GENESYS simulator, the focus is on the behavior of the system, so only the possible settings for
those attributes that affect simulation execution will be discussed in this guide.

2.3.1 Function
A Function is a transformation that accepts one or more inputs/triggers (Items) and produces outputs
(Items). It is decomposable, and its behavior is defined using an EFFBD. When executed by the simulator,
certain attributes of a Function (and attributes of relationships between a Function and Resources and
Exits) affect its execution. These are described in Table 3 below. An order has been established for
determining when these attribute values are executed for a given Function in a GENESYS simulator model.
This order is discussed in Section 4.12.

Table 3 Function Entity Attributes

ATTRIBUTE DATA TYPE SIGNIFICANCE NOTES
Duration NumberSpec Determines how long the

Function will run once it starts.
The value can be set to a constant,
a draw from a probability
distribution, or the result of
executing a script.

Begin Logic ScriptSpec Begin Logic contains a script
that is executed at the very
beginning of Function
execution.

Exit Logic ScriptSpec The Exit Logic specifies –
through a script – which exit is to
be taken for a multi-exit
Function.

If the exit logic is nil, the selection
probability attributes of the exits by
relationships are used to choose
the exit. If the selection attributes
are not set, each exit branch will
have an equal likelihood of
selection. Selection of the exit
occurs at the end of Function
execution. Note, if the Function
has only a single exit, the script will
not be executed.

End Logic ScriptSpec End Logic contains a script that
is executed at the very end of
Function execution.

Timeout NumberSpec Maximum time permitted
between Function enablement
and the start of execution.

If the timeout is exceeded, the
function will not execute. Upon
timeout, if a timeout exit branch
(Exit) exists, it is automatically
selected.

Simulator User Guide

19

ATTRIBUTE DATA TYPE SIGNIFICANCE NOTES
Execute
Decomposition

Boolean Indicates whether the Function
or its decomposition is to be
executed. True means that the
Function’s decomposition is
executed. When false is
selected, the Function’s
decomposition is ignored and
the Function’s attributes and
relationships are used.

The default value for this attribute
is true; all decomposed functions
are fully expanded and executed
during simulation. To execute at a
higher level, one can set the
Execute Decomposition to false.
For these functions, the model will
execute at that higher level and will
ignore the more detailed
decomposition models below it.

Acquire Available
captures

Boolean True means that the Function
acquires the amount of
Resources currently available
and waits for the remainder of
the Resource to become
available before it executes.
False means that the Function
waits for the full amount to
become available before it
acquires the Resource amount
it needs to execute.

True has the effect of making
resource requests into a FIFO
sequence. False allows a function
with smaller resource needs to
take the resource while the
function with larger needs is
waiting.

Amount
captures

NumberSpec This value is the amount of
Resource that will be acquired
when the Function starts
execution and released when
execution terminates.

Can be a constant, random
number, or defined by a script.
Amount is determined upon
Function enablement.

Acquire Available
consumes

Boolean True means that the Function
acquires the amount of
Resources currently available
and waits for the remainder of
the Resource to become
available before it executes.
False means that the Function
waits for the full amount to
become available before it
acquires the Resource amount
it needs to execute.

True has the effect of making
resource requests into a FIFO
sequence. False allows a
Function with smaller resource
needs to take the Resource while
the Function with larger needs is
waiting.

Amount
consumes

NumberSpec This value is the amount of
Resource that will be
consumed by the Function
when it starts execution.

Can be a constant, random
number, or defined by a script.
Amount is determined upon
Function enablement.

Amount
produces

NumberSpec This value is the amount of
Resource that will be produced
by the Function when it
completes execution.

Can be a constant, random
number, or defined by a script.
Amount is determined upon
Function termination.

Type
exits by

Enumeration
with possible
values:
Normal
Exception
Timeout

This value identifies the type of
exit from the related function.
The Timeout exit is taken if the
Function times out; otherwise,
a Normal or Exception exit is
taken.

Simulator User Guide

20

2.3.2 Item
Items are the inputs, triggers, and outputs from Functions. As shown in Table 4, two attributes guide and
affect simulation results.

Table 4 Item Attributes

ATTRIBUTE DATA TYPE SIGNIFICANCE NOTES
Type Enumeration

with possible
values:
nil
Analog
Digital
Physical
Mixed

The attribute type determines
how items are handled in
triggering multiple Functions.

If the item Type is Physical, the
Item will trigger only the first
Function that is enabled. The
others will wait for a later instance
of the Item.
Any other type is duplicated,
triggering all Functions related to
the Item via the inputs relation
where the relationship attribute
Triggering is set to True.

Size NumberSpec This value identifies the size of
the Item that is transferred by a
Link. The total time for an Item
to be transferred across a Link
is: Link Delay + (Item Size /
Link Capacity).

2.3.3 Link
A Link is the physical implementation of an interface. The Link entity represents the path over which the
Items are transferred. As shown in Table 5, two key Link characteristics are Capacity and Delay.

Table 5 Link Attributes

ATTRIBUTE DATA TYPE SIGNIFICANCE NOTES
Capacity NumberSpec This value identifies the flow

capacity of the Link. Assuming
an ideal model, Item and Link
time Units are the same, a Link
with a Capacity of 1.0 can
transfer an Item of Size 1.0 in 1
simulation time unit.

Delay NumberSpec Delay represents the time delay
that occurs when an Item
traverses the Link. It is intended
to model the actual propagation
delay and processing delay, not
the delay due to Resource
utilization.
The total transfer time is the
Delay time plus the actual
transfer time of the Item.

2.3.4 DomainSet
A DomainSet entity is used to define the number of iterations in a control structure. Table 6 describes the
attribute that may affect the simulator results.

Simulator User Guide

21

Table 6 DomainSet Attributes

ATTRIBUTE DATA TYPE SIGNIFICANCE NOTES
Count NumberSpec Count specifies the number of

iterations for the associated
construct.

Can be a constant, random
number, or defined by a script.

2.3.5 Exit
An Exit entity identifies a possible path to follow when a Function completes. By definition, multi-exit
Functions have more than one Exit (i.e., more than one target of the exits by relation). Table 7 describes
each of the attributes of the exit for relationship that affects the simulator results.

Table 7 Exit Attributes

ATTRIBUTE DATA TYPE SIGNIFICANCE NOTES
Type
exit for

Enumeration
with
possible
values:
Normal
Exception
Timeout

This value identifies the type of
Exit from the related Function.
Timeout Exit is taken if the
Function times out; otherwise,
Normal or Exception Exit is
taken.

Selection
Probability
exit for

Float This value indicates the
likelihood of exiting the
Function via the Exit.

This value is normalized, meaning
that the sum of all the probabilities
for all exits does not have to be 1.0.
If the selection likelihood of taking
Exit 1 is 3 and the selection
likelihood of taking Exit 2 is 2, then
the probability of the Function
exiting by Exit 1 is 3/5 or 60%.
NOTE: Setting a selection
probability overrides use of the
default (equal likelihood). Setting
the Exit Logic attribute of a
Function takes precedence over
any selection probabilities.

2.3.6 Resource
The Resource entity represents something (e.g., power, MIPs, channels, etc.) that a system uses or
generates. Each Function may consume, capture, or produce Resources.

Table 8 describes the Resource attributes and the attributes of consumed by, captured by, and produced
by relations that affect simulation results.

Simulator User Guide

22

Table 8 Resource Attributes

ATTRIBUTE DATA TYPE SIGNIFICANCE NOTES
Amount Type Enumeration

with possible
values:
Float
Integer

Indicates the type of value for
the Resource amounts.

Initial Amount NumberSpec

Specifies the amount of the
Resource that is present in the
system when the system starts.

Maximum
Amount

NumberSpec Specifies the largest amount of
the Resource that can be
present in the system at any
time.

Once the maximum is reached, the
Function producing the Resource
will continue to execute but will not
produce any of the resource until
its level drops below the maximum.

Acquire Available
captured by

Boolean True means that the Function
acquires the amount of the
Resource currently available
and waits for the remainder of
the Resource to become
available before it executes.
False means that the Function
waits for the full amount to
become available before it
acquires the Resource amount
it needs to execute.

True has the effect of making
Resource requests into a FIFO
sequence. False allows a
Function with smaller resource
needs to take the Resource while
the Function with larger needs is
waiting.

Amount
captured by

NumberSpec Determines the amount of the
Resource that will be acquired
when the Function starts
execution and released when
the execution terminates.

Can be a constant, random
number, or defined by a script.
Amount is determined upon
Function enablement.

Acquire Available
consumed by

Boolean True means that the Function
acquires the amount of the
Resource currently available
and waits for the remainder of
the Resource to become
available before it executes.
False means that the Function
waits for the full amount to
become available before it
acquires the Resource amount
it needs to execute.

True has the effect of making
Resource requests into a FIFO
sequence. False allows a
Function with smaller Resource
needs to take the Resource while
the Function with larger needs is
waiting.

Amount
consumed by

NumberSpec Determines the amount of the
Resource to be acquired when
the Function starts execution.

Can be a constant, random
number, or defined by a script.
Amount is determined upon
Function enablement.

Amount
produced by

NumberSpec Determines the amount of the
Resource to be generated
upon completion of the
Function.

Can be a constant, random value,
or defined by a script. Any
computation is made at the end of
Function execution.

Simulator User Guide

23

2.4 NumberSpec
NumberSpec is a special GENESYS attribute type that provides a great deal of flexibility in specifying and
modeling systems. A NumberSpec can be a constant value, a random value or the result of a script.
NumberSpec attributes are listed in Table 9. A NumberSpec Type Selector window is shown in Figure 18.

Table 9 NumberSpec Attributes

Attribute Class/Relationship
Duration Function

Amount Function-Resource
captures/captured by relation

Amount Function-Resource
consumes/consumed by relation

Amount Function-Resource
produces/produced by relation

Timeout Function-Exit exits by/exit for
relationship

Count DomainSet
Size Item
Capacity Link
Delay Link
Initial Amount Resource
Maximum Amount Resource

Figure 18 NumberSpec Type Selector Window

• Select Constant to set the attribute value to a fixed value throughout the simulation execution.
• Select Random to utilize a distribution to set the attribute value at the start of each execution of the

Function. There are several distributions from which to choose. The default distribution is the one

Simulator User Guide

24

set in User Random Distribution Preferences. For a listing of the possible distributions and a
brief description of each, see Appendix A – GENESYS Simulator Distributions.

• Select the Script option to create a Microsoft Visual Basic script to determine the attribute value.
The Script Editor Window as shown in Figure 19. GENESYS will execute the script at the start of
each execution of the Function once the necessary Resources have been acquired and triggers
processed. More information on scripting is provided in Section 6.

Figure 19 Script Editor Window

A NumberSpec script must exit with a Return construct that returns a variable containing the value to be
used by the attribute.

2.5 ScriptSpec
A ScriptSpec is a type of attribute that is used to provide control or flexibility to a GENESYS simulation
model. There are three Function attributes that are ScriptSpec type. These are listed in Table 10. On each
execution of a given Function, the script defined in these attributes is executed as the Function is
executed.

Simulator User Guide

25

Table 10 ScriptSpec Attributes

Attribute Class
BeginLogic Function
EndLogic Function
ExitLogic Function

The script is entered/modified by clicking the Edit button next to the attribute in the Properties window.
The Edit button opens a Script Editor window (Figure 19) where the script is built using Microsoft Visual
Basic and the GENESYS API.

The last command executed in an Exit Logic ScriptSpec must be a Return construct that returns a variable
containing the Exit entity for the selected exit branch. There are no special requirements on Begin Logic
and End Logic ScriptSpecs. Refer to Section 6 for additional information on using Microsoft Visual Basic
and the GENESYS API.

Simulator User Guide

26

THIS PAGE INTENTIONALLY BLANK

Simulator User Guide

27

3 CONTROL CONSTRUCTS
To support a full range of behaviors, the FFBD and EFFBD involve typical modeling constructs described
below. It is important to understand the semantic meaning of the constructs to understand how they are
interpreted by the GENESYS simulator.

3.1 Parallel

 A Parallel construct consists of an AND node, followed by
separate branches that rejoin and terminate at another matching AND
node. Each branch can contain any number of Functions and control
constructs. In contrast to sequences of functions and control constructs
where the next entity cannot be executed until the previous one
completes; the parallel construction designates that the parallel
branches can be executed concurrently (even though they may interact
through triggers).

When executed by the GENESYS simulator the first entity on each
branch will be enabled at the same simulation clock time. The construct
cannot be exited (from the second AND node) until all branches have
completed their processing. Control is then passed to the next
Function or Construct after the parallel construct.

3.2 Select

 A Select construct consists of an OR node followed by multiple
branches that rejoin at a matching OR node. Each branch can contain
any number of Functions and control constructs. In contrast to a parallel
construct in which all branches are executed, with a Select construct
only one branch is executed. Thus, the Select construct is an exclusive
OR.

Each branch may be assigned a selection probability to determine the
likelihood of execution during the simulation. If there are no branch
selection probabilities, each branch will have equal likelihood of being
selected for execution.

Simulator User Guide

28

3.3 Multi-Exit Function

 A Multi-Exit Function is a control construct where multiple
branches exit from a Function and rejoin at an OR node. Each
branch is labeled with the name of its associated Exits and can
contain any number of Functions and control constructs. The
criterion for selecting which exit branch to follow is specified by
the Function, either using a Selection Probability attribute
associated with the exits by relation or by scripting logic
embedded within the Exit Logic attribute of the Function. If there
are no exit probabilities and the Exit Logic attribute is empty,
each branch will have equal likelihood of being selected.

One would normally use a Multi-Exit Function construct in lieu of
a Select construct when the selection criterion can be specified
by scripting logic in the Exit Logic attribute or via a corresponding
exit node within the Function’s decomposition.

3.4 Exit Node

 In the case of a Multi-Exit Function, Exit Nodes establish the mapping between the completion of the
decomposition behavior and the exit branches of the parent Function.

There should be at least one Exit Node in the Function decomposition for each exit branch for the
Function. The name for the corresponding exit branch is shown below each exit node icon.

When an Exit Node is encountered during simulation, the decomposition level is exited, and the
corresponding branch of the multi-exit Function is followed.

3.5 Loop

 A Loop construct consists of a pair of LP nodes that
enclose a branch and are connected with a loop back line.
The branch can contain any number of Functions and
control constructs. These will be repeatedly executed in
sequence. The branch will typically contain a Loop Exit
construct to conditionally exit the loop construct. Without
a Loop Exit, the Loop construct becomes an endless loop.

A descriptive annotation should be specified for each Loop construct. The annotation is displayed above
the loop back line. This annotation is only descriptive and does not impact execution.

Simulator User Guide

29

3.6 Loop Exit

 The Loop Exit construct provides the mechanism for
exiting a loop. When the Loop Exit construct is encountered,
the innermost loop is immediately terminated, enabling the
construct or Function following the loop.

3.7 Iterate

 An Iterate construct consists of a pair of IT nodes that
enclose a branch and are connected with a loop-back line. This
line is automatically labeled with the name of the associated
DomainSet entity.

The branch can contain any number of functions and control
constructs. These will be repeatedly executed (in sequence) the
number of times predefined by the DomainSet Count attribute.

If the Count attribute of the DomainSet is not set, the number of iterations will revert to the system default.
The default number of iterations is the one set in Project Simulation User Preferences.

3.8 Replicate

 A Replicate construct consists of a pair of RP
nodes that enclose a main branch and are connected
with a coordination branch. This coordination branch is
automatically labeled with the name of the associated
DomainSet entity.

The replicate construct is a shorthand notation for
identical processes that operate in parallel. The main
process logic is shown on the main branch. The
coordination between these processes is handled via
the coordination branch. An example of a situation
handled by the Replicate would be a supermarket in
which multiple checkout lanes support shoppers
(represented by the Functions on the main branch)

and a manager supports the various checkout lanes as required (represented by the Functions on the
coordination branch).

Simulator User Guide

30

THIS PAGE INTENTIONALLY BLANK

Simulator User Guide

31

4 USING THE GENESYS SIMULATOR
The previous chapters established the building blocks of modeling that the GENESYS simulator executes.
This chapter builds sample models step by step, illustrating the use of constructs and the corresponding
execution characteristics.

4.1 Basic Constructs

4.1.1 Executing a Single Function

Figure 20 Single Function

Figure 20 is a model of a single Function. Figure 21 shows the results of executing this model. Looking at
the timeline window, this Function, First Function, executed for 10.332 simulation time units. The timeline
lists the Function entity in the left pane and shows an execution timeline in the right pane, demonstrating
that the function execution took approximately 10 units. The transcript which appears below the timeline
lists the events that occurred during this simulation run. Briefly, at time 0.0 simulation units, First Function
was enabled. It was waiting for resources; there were none required, so also at time unit 0.0 the Function
started. At 10.3319993872519 time units, First Function completes.

Figure 21 Single Function Simulation Results

Duration Default
In the Single Function example, no duration was set for the Function. The default
preferences in GENESYS specify that in the case of a function with no duration
specified, GENESYS will use a Normal distribution with a mean of 10.0 and a standard
deviation of 1.0. The presence of defaults such as this enable you to quickly develop
and execute models as the system evolves.

Simulator User Guide

32

4.1.2 Executing a Sequence of Functions

Figure 22 Sequence of Three Functions

The three Functions are executed one after another in sequence (Figure 22). When First Function
completes, Second Function is enabled, starts, and finishes. Then it is Third Function's turn. The timeline
is shown in Figure 23.

Figure 23 Multiple Functions Simulation Results

Simulator Executes the Current Behavior Model
Adding entities to the behavior model will affect the next execution of the simulator.

4.1.3 Executing a Select Construct
When a select construct is encountered, the simulator will select one branch to follow and execute all nodes
and constructs on that branch. Only one branch will be taken, and by default, there is an equal chance of
selecting each branch. Thus, for our example in Figure 24, there is 50/50 chance of selecting each branch.

Simulator User Guide

33

Figure 24 Select Construct

As shown in Figure 25, Second Function was executed, but if the simulator is reset and run again, then
First Function may execute. There are, of course, times when one branch is weighted heavier than the
other, such as when it is more likely that one function would be executed. Assigning selection probabilities
is discussed in the Section 4.5, Selection Probabilities.

Figure 25 Select Construct Simulation Results

Simulator User Guide

34

4.1.4 Executing a Parallel Branch
For the example model in Figure 26, the parallel construct (represented by the AND nodes) indicates both
branches are to be traversed in parallel; therefore, both Functions are to execute concurrently. The
simulator transcript and timeline in Figure 27 show that both Function entities were enabled and started at
exactly the same time. First Function happened to finish before Second Function, but if the simulator is
reset and run again, Second Function may complete first. This is once again due to the default setting for
the Duration attribute, which is set to be a normal distribution. If one or both of the Functions’ Duration
attribute(s) are set to a constant value, then the Function will run for exactly that number of time units.

Figure 26 Parallel Construct

Figure 27 Parallel Construct Simulation Results

Simulator User Guide

35

4.2 Items in Models

4.2.1 Executing Input Items
Input Items have nothing to do with the control of the model; they simply represent data that one Function
outputs and another Function receives as input. They have no direct impact on the execution of the model.
An example model is shown in Figure 28.

Figure 28 A Data Store Item

As shown in the GENESYS simulator transcript and timeline in Figure 29 the input, Some Data, was written
at approximately 10.08 simulation units, just as First Function and the Parallel construct were finished.

Simulator User Guide

36

Figure 29 Input Item Simulation Results

4.2.2 Executing Triggers
Triggering Items have an impact on control of the model. Functions do not start until they are enabled and
receive their triggering Item(s).

Figure 30 A Data Trigger

Simulator User Guide

37

Earlier, when a model with a parallel branch was executed, both Functions began at exactly the same
time. By adding a triggering Item between the Functions in Figure 30, Second Function cannot start until
the triggering Item is received. Since the triggering Item is an output of First Function, it is not available
until First Function is completed.

Figure 31 Trigger Item Simulation Results

As shown above in Figure 31, Second Function was enabled at 0.0, the same time as First Function.
However, it was not able to start until First Function was complete and could pass the Item to Second
Function. As shown previously in Table 1, the timeline is color-coded to assist in this interpretation.
Durations for Functions that do not have triggers are shown in teal. Durations for Functions that have
triggers are shown in bright green. Yellow indicates the time span from when the Function was enabled to
when the triggering Item arrived and the Function executed.

Displaying Items in the Timeline
If triggering Items do not appear in the timeline, select: Database Entities, in the
simulator window ribbon, to display the items. Refer to Database Entities Pane
(Section 1.6) for more information.

4.3 Iterations
So far, we have been looking at simple functional flows that execute once. Often functions and logic need
to operate repetitively. We designate this by enclosing the repeating logic with an iterate construct.

Simulator User Guide

38

Figure 32 An Iterate Construct

When the simulator is executed on the model shown in Figure 32, the results (Figure 33) show that the
model is executed three times (as specified by either the system default setting or by the DomainSet
defining the iterate). With each iteration, both Functions are enabled at the same time, First Function
executing immediately and Second Function waiting for the triggering Item before it is able to execute.

Figure 33 Iterate Construct Simulation Results

Simulator User Guide

39

4.4 Multi-Exit Functions
Up to this point, we have seen basic simulation models where one Function progresses to the next. In
reality, a Function may have multiple exit paths that represent a selection of the next steps to be taken
given some condition identified by the Function. In Figure 34 we added multiple exits (i.e., by establishing
three targets for the exits by relation) from First Function, thus adding the following three new Exit entities:
Bad Application, Incomplete, and Good Application. On each exit branch, we added a Function (Fix
Application, Do More Work, and Next Function, respectively). Depending on the results of First Function,
the execution will continue with Fix Application, Do More Work, or Next Action after the Item (Some Data)
is output and we are able to trigger Our Second Function.

Figure 34 A Multi-Exit Function Construct

When the simulator is run on this model, the simulator generates a random number and selects the
appropriate branch. Note from the resulting timeline (Figure 35) that First Function executed each time the
simulator looped through the Iterate. Since First Function has three exit branches, the Functions performed
following First Function will be dependent on the random number generator used by the simulator. In the
first iteration, First Function exits by Good Application (resulting in the execution of Next Function). In the
second iteration, First Functions exits by Bad Application (resulting in the execution of Fix Application). In
the third iteration, First Function also exits by Good Application. Note in all three cases, Second Function

Simulator User Guide

40

awaits the triggering Item output from First Function before beginning execution. If we reset and run again,
our results will vary since we are using a random number generator to select the exit branch.

Figure 35 Multi-Exit Function Construct Simulation Results

4.5 Selection Probabilities
The user can specify the probability that a specific branch is taken from a Select construct or that a specific
exit is taken from a multi-exit Function. If not specified, there is an equal chance that a particular branch
will be taken.

Note
There are no constraints on the value entered for a selection probability. If the path
selection information is based on trial data or other information, it is not necessary to
convert the data into percentages. GENESYS will normalize the information provided.
For example, in a 2-branch select construct, if the first branch is taken 4 times and
the second branch is taken 17 times and these values are entered as selection
probabilities, during execution there will be a 4/21 (or 19%) chance of taking the first
path.

If only some branches have selection probabilities, any branch without a probability
will be treated as having zero probability.

In the case of a multi-exit Function, one of the exit paths is selected, and execution continues down that
path. The exit branches, Bad Application, Incomplete, Good Application, in our model have been assigned
likelihoods of 56, 32, and 12, respectively. The sums of the assigned probability values do not have to equal
100 percent; they will be normalized by the simulator. We changed the Count attribute of the DomainSet,
the Iterate, to 10. Figure 36 shows our revised model. Figure 37 shows the results from the simulation run.

Simulator User Guide

41

Based on these probabilities, one would expect Fix Application to be selected most often and Next
Application to be selected least, which was the case.

Figure 36 Multi-Exit Function Construct with Selection Probabilities

Simulator User Guide

42

Figure 37 Multi-Exit Function with Selection Probabilities Simulation Results

4.6 Multiple Levels
Functions may be decomposed into lower-level models. To illustrate this point, we have added application-
processing functions as shown in Figure 38 as the decomposition of Second Function.

Figure 38 Second Function Decomposed

Returning to our Top Function (Figure 39), we see that once a Function has been decomposed to another
level of activity, the Function icon contains a black square in the upper left corner. During simulation, if the
attribute Execute Decomposition of Second Function is set to true, the characteristics of Second Function
are ignored and the characteristics of the three subordinate functions that decompose Second Function are
used. Similarly, if the attribute Execute Decomposition of Second Function is set to false, the characteristics
of Second Function are used during execution. We have inserted another Function following Second
Function; Process Order executes after Second Function.

Simulator User Guide

43

Figure 39 Model Containing Decomposition

Simulator User Guide

44

Figure 40 Results of Model Containing Decomposition

There may be times when you do not want to execute the decomposition of a Function. If the Execute
Decomposition attribute value is set to false, then the Function rather than its decomposition is executed.
By default, the Execute Decomposition is set to true. Note the timeline bar with the diagonal lines (Figure
40). This bar represents the duration of the decomposed Function, Second Function. The starting time for
this Function corresponds to the start time of the first subordinate Function, Receive Application, and the
completion time corresponds to the completion of the last subordinate Function, Process Application.

With the Execute Decomposition attribute value of Second Function set to false, execution of our example
results in the Timeline shown in Figure 41.

Simulator User Guide

45

Figure 41 Execute Decomposition Set to False

4.7 Loop
A Loop construct in a model causes the simulator to repeat the enclosed branch logic. If we replace the
Iterate with a loop, the enclosed logic would be repeated indefinitely rather than a fixed number of times.
The model in Figure 42 will repeat First Function indefinitely. One would have to click Stop on the simulator
to get the simulation to cease.

Figure 42 Loop Construct

Simulator User Guide

46

4.8 Loop Exit
A Loop Exit provides the mechanism by which a loop can be terminated. When the simulator encounters a
Loop Exit, the simulator will jump to the innermost closing loop node and execute the Function or construct
immediately after the loop close. In Figure 43 we have replaced the Iterate with a Loop and added a Loop
Exit to the Bad Application branch. We have also changed the selection probabilities.

Figure 43 EFFBD with Loop and Loop Exit

4.8.1 Executing a Model with a Loop and Loop Exit
You can see from the timeline below in Figure 44, we looped 10 times before First Function exits by the
Bad Application exit. After exiting the loop, the next Function in sequence, Stop Work, executes to
complete the simulation run. If we reset and run again, our results will vary, but we will always stop only
after we encounter the loop exit on the Bad Application branch.

Simulator User Guide

47

Figure 44 Results for Model with Loop and Loop Exit

4.9 Replicate
Sometimes multiple instances of identical sets of functions and logic need to operate simultaneously. We
designate this by enclosing the replicated logic with a replicate construct.

Figure 45 A Replicate Construct

Simulator User Guide

48

When the simulator is executed on the model shown in Figure 45, the results (Figure 46) show that the
three instances of the replicated logic are executed simultaneously. The number of replicated instances is
specified by either the system default setting or by the DomainSet defining the replicate. With each
replicate, instantiated Functions are enabled at the same time, with each instance of First Function
executing immediately and Second Function waiting for the triggering Item from its associated First
Function before it is able to execute.

Figure 46 Results for Model with A Replicate Construct

4.10 Kill Branch
When a kill branch is completed, all functions within the parallel construct immediately stop and control is
transferred to the construct following the parallel construct. This kill status specification permits you to model
termination paths for concurrent behavior. If specified as a kill branch, the label "kill" will be displayed at the
front of the branch below the control flow line.

As shown below in Figure 47, the model consists of three branches; two of these branches contain loops
without exits. By designating the third branch as a kill branch, the loop branches will terminate upon
execution of the third branch. Often Parallel construct branches will contain infinite Loop constructs that
need to be terminated simultaneously upon a specific event. Adding an additional parallel branch and
designating the branch as a “kill“ branch, as illustrated below, represents this.

Simulator User Guide

49

Figure 47 Model with Kill Branch

When a kill branch completes its execution, all executing Functions within the parallel construct
immediately stop and control is transferred to the construct following the parallel rejoin, in this case, the
Function Stop Work. Any Resources captured by these Functions will be released; however, these
Functions will neither produce any Resources nor generate any Items. In our model, we exited the parallel
construct when Prepare Report completes execution. The results are shown in Figure 48.

Simulator User Guide

50

Figure 48 Simulation Results with Kill Branch

4.11 Executing a Model with Links and Items
GENESYS provides a modeling capability that integrates both the functional and physical views of the
system. The modeling semantics are shown in the schema diagram below (Figure 49). The simulator is a
valuable tool for evaluating the feasibility of a proposed architecture once the functional allocations and the
association of the Items to the Links is completed. The systems engineer will be able to evaluate the
architecture’s performance and possibly discover unexpected results. The following examples show how
Link Delays can affect overall system timeline.

Figure 49 Link Schema Diagram

Simulator User Guide

51

The GENESYS simulator evaluates three attributes (Delay, Size and Capacity) within the Item and Link
classes respectively when it computes the total time for a Link to transfer an Item as shown in the following
equation:

Total Link Time = [Link Delay + (Item Size/Link Capacity)]

To show the impact on performance, a model was created and run with variation of these attributes. This
model is shown in Figure 50. Note Some Data is transferred by a Link, Transfer Link.

Figure 50 Link-Item Model

Initially the Item Size is set to 0.0; the Link Capacity is set to 1000.0 with a Delay of 0.0. Simulation results
with these values are shown in Figure 51. Note there is no delay. Once First Function completes execution,
the triggering Item, Some Data, is created and triggers Second Function, allowing the start of execution.

Simulator User Guide

52

Figure 51 Simulation Results with Item Size = 0.0, Link Capacity = 1000.0, Delay = 0.0

For the second simulation run, the Item size is increased to 1000.0. Results for this simulation run are
shown in Figure 52. Note the total run time is increased due to the delay caused by the time necessary for
the Link to transfer the item.

Figure 52 Simulation Results with Item Size = 1000.0, Link Capacity = 1000.0, Delay = 0.0

Lastly, as shown in Figure 53, the Link Delay is increased from 0.0 to 0.5. The overall system performance
is further degraded due to this Link Delay.

Simulator User Guide

53

Figure 53 Simulation Results with Item Size = 1000.0, Link Capacity = 1000.0, Delay = 0.5

In summary, GENESYS provides the means to define interfaces between Components, and with the
GENESYS simulator, the functional interfaces of the system can be evaluated to determine the effects of
interfaces on the system design.

Simulator User Guide

54

4.12 Execution Order
A simulation run is defined as an execution path through the functional model. The execution of a Function
is constrained by its Duration, Exit Logic, and any specified Timeout as well as Resource availability.
Resource availability during a simulation run is dependent upon the Initial Amount of the Resource, the
Maximum Amount of the Resource available and the rate of production and consumption of the Resource.
As discussed later, scripts provide a mechanism to dynamically control these factors affecting execution.
Therefore, the order in which scripts are executed is significant and must be considered when building a
simulation model using scripts. The following discussion assumes these attributes capitalize on the use of
scripts and provide a discussion on the order of execution.

When the GENESYS simulator is opened or the reset command is issued, the simulation model is initialized.
The initialization process evaluates the Initial Amount and Maximum Amount of all Resources and
traverses the functional flow structure of the top-level function on which the simulator was opened. Each
branch encountered in the traversal constructs is traversed from left to right. Children branches of
constructs are traversed from top to bottom. When a Function construct is encountered, its
decomposition is traversed if the Execute Decomposition attribute value of the Function is set to true.

As each Function construct is encountered during the initialization process, Resources and Links
associated with the Function are initialized. A Resource is associated with a Function if the Function
captures, consumes, or produces the Resource. A Link is associated with a Function if the Function
inputs or outputs an Item carried by the Link. Resources are initialized before links; however, no particular
order is followed in the initialization of the Resources or the initialization of the Links. For example, if a
Function outputs multiple Items carried by Links, the Links are not processed in any particular order.

4.13 Resource execution order
When a Resource is encountered during the model execution, the Maximum Amount attribute is evaluated
followed by the Initial Amount attribute.

4.13.1 Link execution order

With respect to the execution model, Links are defined by their Capacity and Delay. When a Link is
encountered, the Link Capacity is evaluated followed by the evaluation of the Link Delay.

4.13.2 Function and ProgramActivity Script Execution Order
When the simulation model is executed, the functional flow structure is traversed in the same order as
during the initialization process. Most of the behavior exhibited by the simulation model is defined by the
Processing Units (entities of the Function and ProgramActivity class) in the domain model.

When the flow of control moves to a function and the function is enabled, the Timeout value will be
calculated; After that the attributes are evaluated in the following order:

1. The following are pre-checked and will not happen unless all conditions are satisfied. They run in the

following order:
1.1. The captures Amount is reserved. If there are multiple captures relationships for the function, they

will be captured in alphabetical order of the Resource names.
1.2. The consumes Amount is consumed. If there are multiple consumes relationships for the function,

they will be consumed in alphabetically order of the Resource names.
1.3. Physical triggers are dequeued. If there are multiple physical triggers, they will be dequeued in

alphabetical order of the Item names.
2. The Begin Logic script is run. The Begin Logic script is where any preconditions on the function are set

before the normal function behaviors are executed.
3. The Duration value is calculated.
4. Function execution. See note 1 below.
5. Item Size attribute is evaluated for each outputs relationship. There is no specific order when there are

multiple outputs relationships for the Function.

Simulator User Guide

55

6. Produces Amount attribute is evaluated for each produces relationship. There is no specific order when
there are multiple produces relationships for the function.

7. The End Logic attribute is evaluated. The End Logic script is where any post conditions can be
performed.

8. If the Function is a multi-exit function, the Exit Logic attribute is evaluated.

Note 1: if the Functions are located in a branch other than the kill branch and the kill branch completes
execution before Function execution (step 5 above) is complete, the Function will terminate execution at
the same time that the kill branch completes execution. If this termination time is before its normal execution,
i.e. at the end of the Function’s duration, then

1. The Items will not be generated.
2. Resources will not be produced.
3. The Exit Logic attribute will not be evaluated.
4. The End Logic attribute will not be evaluated.

DomainSet Script Execution Order

The Count attribute of the DomainSet on an Iterate construct determines the number of iterations through
the construct. The DomainSet Count attribute is evaluated on the first iteration through the branch when
flow of control moves to an iterate.

Simulator User Guide

56

THIS PAGE INTENTIONALLY BLANK

Simulator User Guide

57

5 ADDING RESOURCES
Adding resources to your model allows users to investigate their systems’ resource requirements and
effects of resource contention on the timeline. The GENESYS base schema contains the Resource class.
Resources can be produced by, consumed by, or captured by a Function when running the GENESYS
simulator. The simulator will account for the production, consumption, or usage of these resources during
execution of the model. As previously discussed in Section 1.6, the resources may be displayed on the
simulator timeline.

Resources are consumed when a Function begins its execution and are produced when the Function
terminates its execution. If a Function captures a Resource, the Function acquires the Resource when
it starts execution and releases the Resource when it terminates. Refer to Section 4.12 for more information
on order of execution.

Captured resources are not consumable; rather, they represent renewable resources such as computer
memory. A renewable resource is captured (and held) at the beginning of the Function's execution and
released at the end of the Function's execution.

Consume/Produce In Lieu of Capture
If all functions on a branch capture a Resource; instead of having each Function
capture the Resource, have the first Function on the branch consume the Resource
and have the last Function on the branch produce the Resource.

The amount of Resource consumed, produced, or captured is designated by the Amount attribute of the
corresponding relationship. The Amount attribute can be specified as a constant, random number, or the
result of executing a script. This uses the NumberSpec described in Section 2.4. If the amount is not set,
the simulator will use 1 as the value.

The Acquire Available attribute on these relationships is a Boolean value (true/false) that specifies whether
the Function should reserve the available resources while waiting for the full amount to be available. If set
to false, the Function waits for the full amount to become available before it acquires the Resource Amount
it needs to execute. If set to true, the Function acquires the amount of Resource currently available and
waits for the remainder of the Resource to become available before it executes.

5.1 Executing a Model with Resources
Using our simple example, EFFBD with Loop and Loop Exit (Figure 43), we have modified the model by
adding a Resource, MIPS, to all functions and deleting the trigger. When a Resource is displayed in the
timeline window, the amount of the Resource is displayed to show the available amount of the Resource
at any given time. If a Resource is demanded by a Function, the Resource amount is deducted from the
amount available and the timeline display is decremented to show the amount remaining. If the Acquired
Available relationship attribute is set to true and an insufficient amount is available, then the Resource is
highlighted in red to indicate that the Resource is reserved for a Function. In addition, the Function that
requested the Resource will not execute until the full amount is available, indicating a starved Function
waiting for a Resource. The delay-time for the Function from requesting the resource amount until
acquiring it is depicted on the timeline by a magenta-colored timeline bar preceding the execution of the
Function.

Simulator User Guide

58

Figure 54 Loop Model with Insufficient Resources

As shown in the timeline above (Figure 54), there are insufficient MIPS, as shown in red, that result in
execution delay of three Functions, the delays shown as magenta. The obvious solution to improve
performance is to increase the Resource from an Initial Amount of 3 to an Initial Amount of 6. Upon resetting
and running the simulation with increased MIPS, the timeline (Figure 55) shows that the resources are now
more than adequate and eliminate any delay in execution. Further analysis can be accomplished to optimize
the design such that the least amount of resources is specified for the desired performance.

Figure 55 Loop Model with Adequate Resources

Simulator User Guide

59

Resources can also be added to a model to provide control. Specifically, Resources can function as
triggers. For example, one Function produces a trigger-type Resource that is then consumed by a
subsequent Function awaiting the trigger-type Resource. Again, going back to our Loop Exit model, a
Resource, Start Branch has been added to the model. First Function produces Start Branch which is
consumed by Receive Application. The simulation results are shown in Figure 56. Note that Receive
Application is delayed (magenta bar) until First Function completes execution, producing the Resource,
Start Branch.

Figure 56 Loop Exit Model with Trigger-Type Resource

Simulator User Guide

60

THIS PAGE INTENTIONALLY BLANK

Simulator User Guide

61

6 ENHANCING THE SIMULATOR MODEL USING SCRIPTING
GENESYS uses the Microsoft Visual Basic .NET language to allow users to specify computations and logic
to detail the behavior and resource models. The power of the GENESYS simulator model is enhanced by
incorporating scripting. The model becomes much more powerful, allowing the user to vary input conditions
and logic from one simulation run to the next as well as collecting data in alternative format other than the
timeline for detailed analysis. This section is intended to provide a brief introduction to the use of Microsoft
Visual Basic within the GENESYS simulator.

6.1 Script Basics
Scripts, written using Microsoft Visual Basic2, are added to a GENESYS simulator model through the Edit
NumberSpec script window or the Edit ScriptSpec Window; an example window is shown in Figure 57.
These windows can be accessed by selecting the Edit button for the applicable attribute or double-clicking
the relationship attribute then selecting the script button. This window consists of the following parts: the
Editor ribbon at the top of the window; the Script pane on middle left; the Error pane on the lower left; the
Solution Browser pane on the middle right; the Explorer pane on the lower right.

Figure 57 Edit ScriptSpec Window

2 NOTE: The version of Visual Basic used within GENESYS for scripting is Visual Basic .NET. GENESYS
does not use Visual Basic for Applications nor VBScript.

Simulator User Guide

62

6.2 Model Access from Script Basics
The script context, which is passed into your script via the context parameter, which is of type
IScriptContext, gives the user the ability to access both the underlying model and aspects of the execution
instance of the running simulation. For the rest of this section, we will use word context when referring to
entities of the model stored in the database and accessible by all other parts of the tool. We will use the
phrase execution instance or the word instance when referring to data generated during the execution of
the model in the simulator. It is important to be aware of this distinction when writing scripts as changes
made to the context entities and relationships will persist after the simulation has run. Execution instance
values are those values generated during the simulation run. An example of this is the duration value of a
function which is set to a random distribution. Directly before a function’s execution (see 4.13.2), the random
distribution setting gets evaluated to a double value for that instance of the function. At this point, the
evaluated value is available to the function’s scripts as a read only value though the IFunctionInstance
interface.

6.2.1 Using the IFunctionInstance Interface
To access the execution instance of the function you are running within, use the GetExecutionInstance
member of the context parameter.

 Dim funcExec As IFunctionInstance
 funcExec = CType(context.GetExecutionInstance, IFunctionInstance)

In the code snippet below, we use funcExec above to access the function’s timeout and duration values:

 Dim funcInstanceDuration As Double = funcExec.InstanceDuration
 Dim funcInstanceTimeout As Double? = funcExec.InstanceTimeout

NOTE 1: the function’s timeout value may be Nothing, which indicates that there is no
timeout value for this function.

NOTE 2: Duration and Timeout values are not recursive/reentrant. If you attempt to get
duration from the duration script, an InvalidScriptExecutionOrderException exception
will be thrown.

To access captured, consumed and produced resources of a function instance, a different pattern is
used. The calls:

• InstanceCapturedResources
• InstanceConsumedResources
• InstanceProducedResources

return a list of context entities of class Resource at the instant they are evaluated by the function. To
determine the specific amounts for each resource the calls:

• GetCapturedAmount(IEntity)
• GetConsumedAmount(IEntity)
• GetProducedAmount(IEntity)

are provided by IFunctionInstance. Pass these functions the context entities of class Resource to retrieve
the amount of resource captured/consumed/produced by the function instance. The following VB code
segment loops through and displays all the resources produced by a function and their respective amounts.

Simulator User Guide

63

 Dim resourceList As List(Of IEntity)
 Dim funcExec As IFunctionInstance
 funcExec = CType(m_context.GetExecutionInstance, IFunctionInstance)

 If funcExec IsNot Nothing Then
 If funcExec.InstanceProducedResources Is Nothing Then
 System.Windows.MessageBox.Show("No Resources Consumed")
 Else
 resourceList = funcExec.InstanceProducedResources
 Dim msg As String
 msg = "Resources Produced:"
 For Each ent As IEntity In resourceList
 Dim amt As Double?
 msg += ent.Name + "["
 amt = funcExec.GetProducedAmount(ent)
 If amt Is Nothing Then
 msg += "-]"
 Else
 msg += amt.ToString + "]"
 End If
 Next

 System.Windows.MessageBox.Show(msg)
 End If
 End If

NOTE 1: Since Resources may have limits, the amount produced is not necessarily the
amount added to the resource queue.

The same pattern can be used for captured and consumed resources. As with duration and timeout, if you
attempt to access these values before they have been calculated in the function’s execution, the call will
throw an InvalidScriptExecutionOrderException exception.

Each entity of class Resource may have a maximum limit of itself which can be queued. To read this limit
call GetResourceLimit(IEntity) from the IFunctionInterface. This method returns Nothing if no limit has been
set for this resource.

A similar approach is used when accessing a function instance’s Item queues, with the important distinction
that Items also have an execution instance within the simulation execution. Accordingly, instead of getting
a list of context entities, these calls return an enumeration of type IItemInstance (see 6.2.2). The following:

• InstanceInputItems
• InstanceOutputItems
• InstanceTriggerItems

all return enumerations of IItemInstance types. Here’s a VB code snippet stepping through a function
instance’s trigger queue:

Simulator User Guide

64

 Dim funcExec As IFunctionInstance
 funcExec = CType(m_context.GetExecutionInstance, IFunctionInstance)
 If funcExec IsNot Nothing Then
 For Each item As IItemInstance In funcExec.InstanceTriggerItems
 Dim msg As String
 Dim limit As Double?
 msg = "Item " + item.InstanceId + " has Q size limit of "
 limit = item.GetTriggerQueueSize
 If limit Is Nothing Then
 msg += "[NO LIMIT]"
 Else
 msg += "[" + limit.ToString + "]"
 End If
 System.Windows.MessageBox.Show(msg, "Trigger Instance Q Limit")
 Next
 End If

6.2.2 Using the IItemInstance Interface

The IItemInstance interface allows the script writer to access the execution instances of the Item class. Item
instances are created by function instances during their output step (EndLogic and ExitLogic scripts - see
4.13.2). Each Item instance has a unique id, accessible via the InstanceId method. The following code
snippet displays all of the outputs of the function the script is running within, using the OutputItemInstances
property of the IFunctionInstance interface.

 Dim FuncInst As IFunctionInstance = m_context.GetExecutionInstance
 For Each item As IItemInstance In FuncInst.OutputItemInstances
 System.Windows.Forms.MessageBox.Show(
 "An instance of Function " + FuncInst.ModelEntity.Name +
 " output an instance of " + item.ModelEntity.Name +
 " with an ID of " + item.InstanceId)
 Next

Scripts in another simulated function, which is triggered by, or has inputs from this function can then read
these item instances from their function instance’s TriggerItemInstances and InputItemInstances properties
respectively. The following code snippet demonstrates code which would be found in a Duration or
BeginLogic script, reading through all of the Item instances which the function inputs.

 Dim FuncInst As IFunctionInstance = m_context.GetExecutionInstance
 For Each item As IItemInstance In FuncInst.InputItemInstances
 System.Windows.Forms.MessageBox.Show(
 "An instance of Function " + FuncInst.ModelEntity.Name +
 " input an instance of " + item.ModelEntity.Name +
 " with an ID of " + item.InstanceId)
 Next

NOTE: The Timeout script runs before inputs and triggers are processed by a function instance, so
an exception will be thrown if you try to access them.

As with the IFunctionInstance interface, if you attempt to access a value before it has been calculated within
the function’s execution order, the call will throw an InvalidScriptExecutionOrderException exception.
When an Item is used as an input or trigger to a Function, a queue is created when the model runs. The
size of this queue can be set by the Size attribute of Item. To read an Item’s queue size from within a script,
use the QueueSize property on the IItemInstance Interface.

Simulator User Guide

65

6.2.3 Attaching objects IItemInstances

When running a model, it is often desirable to attach script objects to the item instances. This is achieved
by using the Fields attribute of the Item class. In the following sample we will use a field named Color, this
specific field needs to be added to the Item using its property sheet before it can be accessed in a script.
The following script snippet shows adding a string value to a field named Color, which has been added to
an Item named Item001.

 Dim FuncInst As IFunctionInstance = m_context.GetExecutionInstance
 Dim anyObj As String = "Yellow" ' Does not need to be a String
 For Each item As IItemInstance In FuncInst.OutputItemInstances
 If item.ModelEntity.Name = "Item001" Then
 item.SetField("Color", anyObj)
 End If
 Next

The script which reads the value back out from within the function inputting this Item instance looks like
this:

 Dim FuncInst As IFunctionInstance = m_context.GetExecutionInstance
 Dim myObj As Object
 For Each item As IItemInstance In FuncInst.InputItemInstances
 If item.ModelEntity.Name = "Item001" Then
 myObj = item.GetField("Color")
 System.Windows.Forms.MessageBox.Show("Got Value ["+myObj.ToString()+"]")
 End If
 Next

To see a list of all of the fields which have been added to an Item from inside of a script, use the Fields
property of the IItemInstance interface.

6.3 GENESYS Application Programmer’s Interface
The user’s scripts, written in Visual Basic, access the GENESYS repository, and hence the project data,
through the GENESYS Application Programmer’s Interface (API). Details on using the API are given in the
Getting Started with GENESYS API document, which is included in the GENESYS documentation.

Simulator User Guide

66

THIS PAGE INTENTIONALLY BLANK

Simulator User Guide

67

APPENDIX A - GENESYS SIMULATOR DISTRIBUTIONS

GENESYS offers the advanced simulator user the ability to perform simulations that are more complex.
These simulations emulate conditions that are more realistic where events and timing possess random
elements. GENESYS uses two primary features for better using the simulation results to effect change to
the desired system behavior.

The first feature is the selection and specification of the random distribution characteristics. One may
choose from one or several probability distributions from which to draw random numbers, e.g., binomial,
Bernoulli, Gaussian, Poisson, etc. Once the probability distribution is chosen, values for the parameters
that govern the behavior of the probability distribution can be chosen next, such as the mean and variance
for the Gaussian probability distribution.

The second primary feature is the choice of which Random Number Stream serves as the random value
selection source for any given simulation variable. Multiple Random Number Streams are offered because
this capability allows users to use multiple probability distributions in the simulation and it offers a set of
uncorrelated simulation variables when drawing random variables from the same probability distribution.

For repeatability, GENESYS allows users to specify which Random Number Stream to begin with. To get
this repeatability, GENESYS allows users to specify the beginning Random Number Stream. The stream
can be viewed from the User Random Streams tab of Preferences. Table 11 provides some of the more
common parameters that characterize random variable definitions.

Whether setting the default random variable distribution or editing an attribute such as Duration in the class
Function, clicking the Random tab or Random radio button enables random distribution editing. A drop-
down list allows users to choose the Distribution type, e.g., binomial, uniform, etc. For the random
distribution selected, certain parameters governing the characteristics of the random distribution are
available for editing. The following section provides a brief description of the preset random probability
distributions, and their governing parameter definitions.

Random Variable n – A variable whose value randomly changes as a function of one or more parameters.
GENESYS uses discrete random variables. Discrete random variables take their values from a finite
ordered collection in which the members can be placed in any order.

Random Number Stream – In GENESYS, a sequence of random numbers is captured and associated
with a random number stream. Each random number stream is "randomly" generated using an appropriate
random number generator with using some set of initial conditions. One may use the same set of initial
conditions to generate the same sequence of random variables, or users may want to begin each simulation
with a specific "random" value.

Simulator User Guide

68

Table 11 Random Variable Definitions

Parameter Definition
Mean Weighted average or expected value; provides a measure of the

most likely value of the distribution
Variance Provides a measure of the spread of the random variables relative to

the mean of the distribution.
PDF Probability density function. The PDF is used to determine the

probability that a random variable will lie within a range of values.
Random number
stream

A sequence of random numbers

A brief description of the preset random probability distributions and their governing parameter definitions
is provided below. The graphical representation and details about of these distributions is taken from
Discrete Event Simulation in C by Kevin Watkins.

There is much more to random number methodology and the concepts of probability than what is presented
here. For additional study, in addition to Discrete Event Simulation in C by Kevin Watkins, we recommend
Systems Engineering and Analysis by Benjamin S. Blanchard and Wolter J. Fabrycky.

Bernoulli
The Bernoulli distribution specifies the probability of a successful event as “p.” and the probability of failure
of that event as “1-p.” Given “p,” the Bernoulli distribution calculates the value to have a successful outcome
(such as a time duration of one) if the random number is “<= p.” Otherwise, the distribution calculates the
value to have an unsuccessful outcome (such as a time duration of 0) if the random number is “>p.” This
returns a Boolean value (True or False) that determines if the event was successful. If used to specify a
function duration, the value of p must be > 0 and <= 1.0, and if the result is True, then the Function executes
with a duration of 1. If False, the Function executes with a duration of zero.

Simulator User Guide

69

Beta
The Beta distribution is useful when you need to generate a continuous random variable between fixed
bounds. For instance, use it to model random proportions such as the fraction of packets requiring re-
transmission in a data transmission link. The beta distribution has two parameters, alpha, which affects the
degree of skew, and beta, which affects the peak, where alpha > zero and beta > zero.

Binomial
The Binomial distribution is used to model the number of successes in a sequence of n independent trials.

Chi-Squared
The Chi-Squared distribution with n degrees of freedom is the sum of n independent standard normal
deviates squared.

Simulator User Guide

70

Discrete Uniform
In the Discrete Uniform distribution, each value of the random variable is assigned identical probabilities.

Erlang

The Erlang distribution of order r is the waiting time to the r
th
 event in a so-called Poisson process. It is used

to model service times.

Exponential
The Exponential distribution is used to model purely random events such as the time between failures or
the time between arrivals of a customer.

Simulator User Guide

71

F
The F distribution is often used for testing variances.

Gamma
The Gamma distribution is a commonly used distribution that is also suitable as the basis for the generation
of random variables for several other distributions.

Geometric
The Geometric distribution represents the number of trials that occur in a sequence of Bernoulli trials until
the first success is encountered.

Simulator User Guide

72

Laplace
The Laplace distribution looks like an exponential distribution with a mirror image in the y-axis.

Lognormal
The product of a large number of positive random variables tends to have a lognormal distribution.

Negative Binomial
The negative binomial distribution gives the number of failures before the nth success.

Simulator User Guide

73

Normal
The Normal or Gaussian probability distribution is used extensively because it is useful for describing many
statistical processes.

Poisson
The Poisson distribution is the limiting case of the Binomial distribution. This distribution is useful when the
opportunity for the occurrence of an event is large, but when the actual occurrence is unlikely. The mean
and variance of this distribution are equal, thus there is only one value to enter.

T (Student’s T)
The T distribution is often used for defining confidence intervals.

Simulator User Guide

74

Triangular
The triangular distribution is a simple way to obtain random variables whose distribution functions exhibit
various degrees of skew based on a mode parameter m, 0<=m>=1.

Uniform
The uniform distribution represents the situation whereby a random number can take values within a finite
range with equal probability.

Weibull
The Weibull distribution is used for reliability measures such as the lifetime of components. It is
parameterized by two floating values where Alpha > 0 and Beta < 0.

Simulator User Guide

75

APPENDIX B - TRANSCRIPT WINDOW CONTENT DESCRIPTION

As GENESYS simulates a behavior model, it collects execution data in the transcript window. Each row of
data represents a single, discrete event in the simulation run. These events include the start and finish of
Functions and other constructs within the simulation model. Since a Function can appear multiple places
within the FFBD, different constructs representing the same Function can be executing simultaneously.
Moreover, a Function construct within a Loop or Iterate construct can execute multiple times during the
simulation. Therefore, it is essential to precisely characterize events in the transcript window.

The data is useful for debugging unexpected or undesired simulation results by determining the exact order
in which and times at which certain events occurred. The transcript window data can also be used to drive
limited analyses of the simulation results by filtering, parsing, counting, adding, and subtracting rows;
however, scripts and variables can be used within the model to make this process more efficient (See
Section 6).

The contents of each column, from left to right, are described below.

Column 1 – Time
The first column contains a floating-point number showing the simulation time at which the event occurred.
Frequently, multiple events occur at the same time, and the list is grouped according to time. The unit of
time is not specified but is relative to the Duration attribute of Functions and the Delay attribute of Links
within the simulation model.

Column 2 – Event ID
To understand the contents of this column, a distinction must be drawn between the “scheduled order” of
events and the “order scheduled.” The scheduled order is the order in which the events are handled or
executed and the order in which they generate their transcript window output. However, before an event
can be executed at a scheduled time, it must first be added to the schedule. The order scheduled is the
order in which events are added to the schedule, but this may be different from the order in which the events
are scheduled to be executed (the scheduled order). For example, when a Function start event is executed,
the corresponding finish event is added to the schedule. However, the time at which the finish event is
executed depends on the Duration of the Function. The finish of a Function with a longer Duration might
be scheduled before but executed after the finish of a Function with a shorter Duration.

While the first column (time) represents the scheduled order, the second column represents the order
scheduled. As each primary event is created and added to the schedule, it is assigned a sequential event
ID, which is shown in this column. Associated with each primary event may be one or more “auxiliary”
events, which are designated by ‘(aux)’ in the second column. An auxiliary event is never scheduled but
occurs during the handling of a primary event. An auxiliary event is listed before the primary event that
caused it. Primary and Auxiliary events are explained under the description of the contents of Column 4.

Column 3 – Process ID
A Parallel construct of an FBBD in GENESYS represents the simultaneous execution of all its branches.
The simulator must be able to simulate multiple, concurrent “threads of execution.” These are called
“processes.” A simulator process corresponds to a branch of the simulation model, for example, a branch
of a Parallel construct. However, a process is an “execution artifact.” It is not actually part of the model;
rather, it represents the execution of a branch in the model. In a simulation, every construct of an FFBD is
executed in the context of a process corresponding to its parent branch. Multiple processes may correspond
to the same branch in the model. For example, in a Loop or Iterate construct, the same branch may be
executed multiple times. A new process is created each time the branch is executed.

Processes are arranged in a parent-child hierarchy corresponding to the arrangement of branches in the
simulated FFBD (and the decomposition of its children Functions). The root of the process tree
corresponds to the main branch of the simulated FFBD. A child process is spawned when the simulation

Simulator User Guide

76

encounters a Parallel construct, a Selection construct, a Loop construct, an Iterate construct, a multi-exit
Function, or a Function with the Execute Decomposition attribute set to true. In the case of a Parallel
construct, multiple child processes are generated. While traversing the branch of the nested construct, the
main process is suspended, and the child process is active. At the end of the traversal of the branch of the
nested construct, the child process is terminated and execution of the main process resumes. In the case
of a Parallel construct, multiple child processes are active, and constructs on each branch execute in the
context of the corresponding process. The parent process resumes when all the child processes terminate
or when a child process corresponding to a kill branch terminates.

If the simulated FFBD has multiple levels of nested constructs, then child processes may generate their
own children, etc. When each process is generated, it is assigned a sequential hierarchical ID number
based on the ID of the parent process in which context it was generated. For example, if the simulation
encounters a Parallel construct with three branches in the context of Process 8.9, then the processes
generated for the three Parallel branches will receive ID numbers 8.9.1, 8.9.2, and 8.9.3. If the Parallel
construct is followed by an Iterate construct, and the Count attribute of the associated DomainSet is set to
3, then the process IDs for the three iterations of the branch inside the Iterate construct will be 8.9.4, 8.9.5,
and 8.9.6. The second column of the transcript window output reflects the process ID in which context each
event is handled.

Column 4 – Event Name
The fourth column of the transcript window output lists the event type. Many events are related to each
other and occur in pairs or higher-order groupings. For example, every finish event has a corresponding
start event. However, related events often do not appear in consecutive rows of transcript window output.
They are frequently separated in time and by other events. Descriptions of the various event types follow:

Primary Events

start, finish, functionTimeout – Every time a GENESYS simulation executes an FFBD construct
(Function construct, Parallel construct, etc.), it logs a start event for that construct. If the simulation runs to
completion, then it will also finish every construct it starts and log a corresponding finish event.

In the case of a Function construct, IF the following conditions are true:

• It has no decomposition OR
• Its Execute Decomposition attribute is set to false
• If a Timeout attribute has been specified for it AND
• If it is triggered by one or more Items AND/OR
• It captures or consumes one or more Resources,

THEN a functionTimeout event may be logged in lieu of a finish event, IF the following is true:

After the simulation’s flow of control reaches and enables the Function construct, the Timeout attribute
duration elapses before

1. The triggering Items AND/OR
2. The captured or consumed Resources become available.

transmittedEvent, receivingEvent, receivedEvent – Although Links are not represented in FFBDs or
EFFBDs, a simulation may include Link behavior IF the following are true:

• An Item instance output by a Function in the simulation model is carried by a Link
• The Link is constrained (that is, the Capacity attribute of the Link has been assigned a value) AND
• The Capacity of the Link attribute is non-zero

Simulator User Guide

77

The relationship between an Item instance and a Link can be described by two time windows. The first is
the time period during which the Item instance is being transmitted on one end of the Link. The second is
the time period during which the Item instance is being received on the other end of the Link. These time
windows may be coincident, overlapping, adjacent, or non-intersecting.

• The transmittedEvent occurs at the point in time when the “trailing edge” of the Item instance goes
on the Link.

• The receivingEvent occurs at the point in time when the “leading edge” of the Item instance has
completely traversed the Link and comes off the other end.

• The receivedEvent occurs when the trailing edge of the Item instance comes off the Link.

Between the time when the leading edge goes on the Link and the trailing edge comes off the Link, some
or the entire Item instance is propagating across the Link medium.

IF the following are true:

• The Size attribute of the Item is relatively large
• The Capacity attribute of the Link is relatively large AND
• The Delay attribute of the Link is relatively short

THEN the receivingEvent may occur before the transmittedEvent.

Specifically, the leading edge of the Item instance may completely traverse the Link (and the Item instance
may start coming off the Link) before the trailing edge of the Item instance has been transmitted by the
sending side.

Note that there is no transmittingEvent because transmission begins at the same time the Item instance is
output by a Function, i.e., when the transmittedEvent and the receivingEvent are added to the schedule.
However, if either event is scheduled to occur at that same time, then the event is handled immediately,
and it is never added to the schedule nor logged to the simulator transcript.

The receivedEvent is added to the schedule during the handling of the transmittedEvent; however, similarly,
if the receivedEvent occurs at the same time as the transmittedEvent, then it is handled immediately and
not added to the schedule nor logged to the simulator transcript.

Currently, only one kind of Link behavior is supported. The transmittedEvent always occurs as soon as the
Item instance is output and therefore never appears in the simulator transcript. The time of the
receivingEvent is given by adding to that time the Delay attribute of the Link and the Size attribute of the
Item divided by the Capacity attribute of the Link. The receivedEvent is always concurrent with the
receivingEvent. Other types of Link behavior will be supported in future releases.

Auxiliary Events

captured, released – If a Function captures a Resource, then the captured event is logged to the
transcript window when a GENESYS simulation starts executing a construct representing that Function.
The Function construct cannot start until a sufficient amount of the Resource is available. When the
simulation finishes executing the Function construct, the released event is logged. (See also the
descriptions of the produced and consumed events.)

enabled – When the flow of control of a GENESYS simulation arrives at a Function construct, an enabled
event is logged to the transcript window. Note that the Function construct may not be executed immediately
if the Function depends upon Resources or triggering Items that are not available at that time.

Simulator User Guide

78

exitingDecomposition – The decomposition of a Function is represented by an FFBD view opened on
that Function. Function nodes that appear in that FFBD may have their own decompositions. A GENESYS
simulation traverses and executes the decomposition of every Function construct it encounters where the
Execute Decomposition attribute of the Function is set to true.

Within the decomposition of a child or descendant Function of the main FFBD, if the simulation encounters
an Exit construct, then the simulation logs an exitingDecomposition event to the transcript window and
returns to the parent level, continuing with the construct following the Function construct which
decomposition it exited.

queued, dequeued – A GENESYS simulation logs a queued event to the transcript window when it finishes
executing a Function construct (with no decomposition or with the Execute Decomposition attribute set to
false) and the Function construct outputs an Item instance that triggers another Function construct (with
no decomposition or with the Execute Decomposition attribute set to false) in the simulation model.

If the Item is carried by a Link with a non-zero Capacity attribute, then the queued event occurs when the
entire Item instance has completely traversed the Link from one end to the other.

The dequeued event is logged when the simulation starts to execute a Function construct (with no
decomposition or with the Execute Decomposition attribute set to false) that is triggered by an Item of which
an instance has been queued.

Even if a Function construct has been enabled (see the description of the enabled event), execution of the
Function construct cannot start until the triggering Item instances are available.

Once the Item instance has been dequeued, the Function construct (or any other Function construct
triggered by the same Item) cannot start again until another instance of the same Item has been queued.

produced, excessProduced, consumed – If a Function consumes a Resource, then the consumes
event is logged to the transcript window when a GENESYS simulation starts executing a construct
representing that Function.

The Function construct cannot start until a sufficient amount of the Resource is available or has been
produced by other Function constructs in the simulation model.

If a Function produces a Resource, then the produces event is logged to the transcript window when the
simulation finishes executing a construct representing that Function.

If a Maximum amount is specified for the Resource and a Function construct attempts to produce an
amount that when added to the amount already available would exceed the maximum allowed, then the
excessProduced event is also logged.

(See also the descriptions of the captured and released events.)

timeout – A timeout event is logged to the transcript window in conjunction with the handling of a
functionTimeout primary event.

transmitting, transmitted, backlogged, receiving, received – If an Item instance is output by a Function
construct in a simulation model and the Item instance is carried by a Link with a non-zero Capacity attribute
value, then transmitting, transmitted, receiving, and received events will be logged to the transcript window
by the interaction of the Item instance with the Link.

Simulator User Guide

79

As discussed in the description of the transmittedEvent, receivingEvent, and receivedEvent primary events,
the relationship between the Item instance and the Link can be described by two time windows.

The time period during which the Item instance goes on one end of the Link is bracketed by the transmitting
and transmitted events.

The time period during which the Item instance comes off the other end of the Link is bracketed by the
receiving and received events.

The transmitting event occurs during the handling of the finish primary event for the Function construct that
outputs the Item instance.

The transmitted auxiliary event occurs during the handling of the transmittedEvent primary event. If the
transmittedEvent is not scheduled or logged because it is concurrent with the transmitting event, the
transmitted auxiliary event is still logged.

The receiving auxiliary event occurs during the handling of the receivingEvent primary event. If the
receivingEvent is not scheduled or logged because it is concurrent with the transmitting event, the receiving
auxiliary event is still logged.

The received auxiliary event occurs during the handling of the receivedEvent primary event. If the
receivedEvent is not scheduled or logged because it is concurrent with the transmittedEvent, the received
auxiliary event is still logged.

If the Link that carries an Item instance does not have sufficient capacity to do so at the time the Item
instance is output by a Function construct, then the backlogged event is logged to the transcript window
and the Item instance enters a FIFO (first in, first out) queue.

The sequence of events beginning with transmitting then starts the next time sufficient capacity is available
on the Link.

waitingForResources – The waitingForResources event is logged to the transcript window between the
enabled event and the start event for a Function construct. The waitingForResources event occurs after
any Item instances that trigger the Function construct become available.

Note that the Function construct still may not be executed immediately if the Function depends upon
Resources that are not available at that time.

Column 5 – Construct ID
When GENESYS builds a simulation model from a GENESYS behavior model, each construct and branch
in the simulation model is assigned a unique ID. The structure of the behavior model can be represented
as a hierarchy. The branches of, for example, a Parallel construct can be considered children of the Parallel
construct. Other constructs (Function constructs, Parallel constructs, etc.) on that branch can be considered
children of that branch. A hierarchical view of the behavior model can be seen in the Execution Hierarchy
pane of the timeline elements window. The Execution Hierarchy also shows the unique ID of each construct
and branch. The unique IDs are hierarchical numbers corresponding to positions within the hierarchy.

The fifth column of the transcript window output lists the ID of the construct responsible for each event. In
some cases (e.g., Parallel constructs, which have no names), it is only possible to determine which
construct an event references by correlating the construct ID in this column with the Execution Hierarchy in
the timeline elements window. The construct ID, in conjunction with the process ID of an event, can be used
to match related events, such as the start event associated with a particular finish event.

Simulator User Guide

80

Note that in the simulation model, a multi-exit Function is represented by two constructs, a Function
construct and a “Function Exit Path” construct. The Function Exit Path construct is similar to a Selection
construct and can be seen in the Execution Hierarchy immediately after and in the same branch as the
corresponding Function construct.

Column 6 – Structure
If the event is executing a control construct, then the name of the structure being processed is displayed in
this column. If the event is processing an entity, then this column is blank.

Column 7 – Number
If the event is executing an entity, then the number of the entity being processed is displayed in this column.
If the event is processing a structure, then this column is blank.

Column 8 – Name
If the event is executing an entity, then the name of the entity being processed is displayed in this column.
If the event is processing a structure, then this column is blank.

Column 9 – Event Execution Data
The format of the ninth column depends on the type of event listed in the fourth column (event name) and
the type of construct that generated the event. The possible execution data formats specific to each kind of
event are listed below. Angle brackets are used to designate variable column values, with the text between
the brackets describing the information (e.g., <Function number> would indicate the Function number
attribute would appear in the column). Single quotation marks delineate literal column values (e.g., ‘to’).

captured, released, produced, excessProduced, consumed:
<Function number> <Function name> <amount> ‘to’ <Resource name>
<Function number> <Function name> <amount> ‘from’ <Resource name>

enabled, waitingForResources, functionTimeout, timeout:
<Function number> <Function name>

exitingDecomposition:
‘Exit’ <Exit name>

queued, dequeued:
<Function number> <Function name> <Item name> ‘to’ <Item name>
<Function number> <Function name> <Item name> ‘from’ <Item name>

start, finish:
‘Exit From’ <Function number> <Function name>
<Function number> <Function name>
‘Iterator’
‘Loop’
‘Parallel’
‘Selection’

transmittedEvent, receivingEvent, receivedEvent:
<Link number> <Link name>

transmitting, transmitted, backlogged, receiving, received:
<Function number> <Function name> <Item name> ‘to’ <Item name> ‘via’ <Link number> <Link name>

write, read:

Simulator User Guide

81

<Function number> <Function name> <Item name> ‘to’ <Item name>
<Function number> <Function name> <Item name> ‘from’ <Item name>
<Function number> <Function name> ‘nil’ ‘from’ <Item name>

Log Messages
One or more lines of the simulation transcript may also be used to record log messages. A log message is
drawn from the Log Message attribute of a Function in the simulation model. The value of this attribute, if
any, is printed to the Transcript Window when the simulation executes a Function construct representing
the Function. The message is logged during the handling of the start event. Log messages begin and end
with ‘###’ and also include the alias of the Function class and the Function name.

2270 Kraft Drive, Suite 1600
Blacksburg, Virginia 24060

540.951.3322 | FAX: 540.951.8222
Customer Support: support@vitechcorp.com

www.vitechcorp.com

mailto:support@vitechcorp.com
https://www.vitechcorp.com/

	Preface
	1 GENESYS Simulator – Dynamic Verification Simulator
	1.1 Modeling and Simulation with GENESYS
	1.2 Open Simulator
	1.3 Simulator Window
	1.3.1 Simulator Ribbon

	1.4 Transcript Pane
	1.5 Execution Hierarchy Pane
	1.6 Database Entities Pane
	1.7 Simulation Entities Pane
	1.8 Simulator Preferences

	2 Introduction to Behavior
	2.1 Function Flow Block Diagrams (FFBDs)
	2.2 Enhanced FFBDs / Activity Diagrams
	2.2.1 Triggers vs. Inputs

	2.3 Behavior Elements
	2.3.1 Function
	2.3.2 Item
	2.3.3 Link
	2.3.4 DomainSet
	2.3.5 Exit
	2.3.6 Resource

	2.4 NumberSpec
	2.5 ScriptSpec

	3 Control Constructs
	3.1 Parallel
	3.2 Select
	3.3 Multi-Exit Function
	3.4 Exit Node
	3.5 Loop
	3.6 Loop Exit
	3.7 Iterate
	3.8 Replicate

	4 Using the GENESYS Simulator
	4.1 Basic Constructs
	4.1.1 Executing a Single Function
	4.1.2 Executing a Sequence of Functions
	4.1.3 Executing a Select Construct
	4.1.4 Executing a Parallel Branch

	4.2 Items in Models
	1.1.0.
	4.2.1 Executing Input Items
	4.2.2 Executing Triggers

	4.3 Iterations
	4.4 Multi-Exit Functions
	4.5 Selection Probabilities
	4.6 Multiple Levels
	4.7 Loop
	4.8 Loop Exit
	4.8.1 Executing a Model with a Loop and Loop Exit

	4.9 Replicate
	4.10 Kill Branch
	4.11 Executing a Model with Links and Items
	4.12 Execution Order
	4.13 Resource execution order
	4.13.1 Link execution order
	4.13.2 Function and ProgramActivity Script Execution Order

	5 Adding Resources
	5.1 Executing a Model with Resources

	6 Enhancing the Simulator Model Using Scripting
	6.1 Script Basics
	6.2 Model Access from Script Basics
	6.2.1 Using the IFunctionInstance Interface
	6.2.2 Using the IItemInstance Interface

	6.3 GENESYS Application Programmer’s Interface

	Appendix A - GENESYS Simulator Distributions
	Bernoulli
	Beta
	Binomial
	Chi-Squared
	Discrete Uniform
	Erlang
	Exponential
	F
	Gamma
	Geometric
	Laplace
	Lognormal
	Negative Binomial
	Normal
	Poisson
	T (Student’s T)
	Triangular
	Uniform
	Weibull

	Appendix B - Transcript Window Content Description
	Column 1 – Time
	Column 2 – Event ID
	Column 3 – Process ID
	Column 4 – Event Name
	Column 5 – Construct ID
	Column 6 – Structure
	Column 7 – Number
	Column 8 – Name
	Column 9 – Event Execution Data
	Log Messages

