

System
Definition
Guide

System Definition Guide

ii

Copyright © 1998-2021 Zuken Vitech Inc. All rights reserved.

No part of this document may be reproduced in any form, including, but not limited to, photocopying,
language translation, or storage in a data retrieval system, without Vitech’s prior written consent.

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in the applicable
GENESYS End-User License Agreement and in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause at DFARS 252.277-7013 or subparagraphs (c)(1) and (2) of the Commercial
Computer Software - Restricted Rights at 48 CFR 52.227-19, as applicable, or their equivalents, as may
be amended from time to time.

Zuken Vitech Inc.
2270 Kraft Drive, Suite 1600
Blacksburg, Virginia 24060

540.951.3322 | FAX: 540.951.8222
Customer Support: support@vitechcorp.com

www.vitechcorp.com

is a trademark of Zuken Vitech Inc. and refers to all products in the GENESYS
software product family.

Other product names mentioned herein are used for identification purposes only, and may be trademarks
of their respective companies.

Publication Date: October 2021

mailto:support@vitechcorp.com
https://www.vitechcorp.com/

System Definition Guide

iii

TABLE OF CONTENTS
Preface ... vi
Introduction.. 1
Requirements Capture .. 3

1.1 Define Need and System Concept .. 3
1.2 Capture Source (Originating) Requirements ... 3
1.3 Define System Boundary ... 6
1.4 Collect Additional Applicable Documents .. 7

Requirements Analysis ... 9
1.5 Parse Originating Requirements ... 9
1.6 Identify Requirement Concerns and Risks .. 9
1.7 Risk Management .. 11
1.8 Generate Mitigation Activities .. 16
1.9 Characterize Requirements and Categorize Constraints .. 19

Behavioral Analysis ... 20
1.10 Identify States (If Needed) ... 20
1.11 Use Cases (If Needed) .. 22
1.12 Develop the System Behavioral Hierarchy .. 24
1.13 Refine and Allocate Functional Performance Requirements ... 26
1.14 Capture Behavioral and Performance Concerns and Risks .. 27

Physical Architecture Synthesis .. 28
1.15 Allocate Functions to Next Level of Components .. 28
1.16 Refine External Interface Definitions ... 29
1.17 Derive or Refine Internal Interfaces ... 31
1.18 Assign/Derive Constraints for Components ... 34
1.19 Capture Physical Architecture Concerns and Risks .. 34

Verification/Validation .. 37
1.20 GENESYS Simulator ... 37
1.21 Establish Verification Requirements .. 37
1.22 Establish Verification Events ... 37
1.23 Test Planning ... 39

Change Management Support .. 40

System Definition Guide

iv

LIST OF FIGURES
Figure 1 Systems Engineering Activities .. vi
Figure 2 STRATA MBSE Process .. 1
Figure 3 Source Requirements ... 5
Figure 4 System Boundary.. 6
Figure 5 Applicable Documents and Requirements ... 7
Figure 6 Derived Requirements .. 9
Figure 7 Requirement Concerns and Risks .. 10
Figure 8 Note Class .. 11
Figure 9 Risk Management ... 14
Figure 10 Mitigation Activities ... 17
Figure 11 Constraint Requirements .. 19
Figure 12 States View ... 21
Figure 13 Use Case Application ... 23
Figure 14 Behavioral Decomposition .. 25
Figure 15 Performance Requirements .. 26
Figure 16 Functional or Performance Requirement Concern and Risk .. 27
Figure 17 Component Hierarchy and Function Allocation .. 29
Figure 18 External Interface Definition .. 30
Figure 19 Internal Interface Definition ... 31
Figure 20 Port Definitions .. 33
Figure 21 Component Constraint Requirements .. 34
Figure 22 Physical Architecture Concern and Risk .. 35
Figure 23 Verification Requirements ... 37
Figure 24 Verification Planning ... 38
Figure 25 Test Planning .. 39
Figure 26 Change Management Support .. 41

LIST OF TABLES
Table 1 System Definition ... 3
Table 2 Source Requirements .. 5
Table 3 System Boundary ... 7
Table 4 Applicable Documents and Requirements ... 8
Table 5 Derived Requirements ... 9
Table 6 Requirement Concerns and Risks ... 10
Table 7 Note Class .. 11
Table 8 Risk Management .. 14
Table 9 Mitigation Activities... 17
Table 10 Constraint Requirements ... 20
Table 11 States View .. 21
Table 12 Use Case Application ... 23
Table 13 Behavioral Decomposition ... 25
Table 14 Performance Requirements ... 27
Table 15 Functional or Performance Requirement Concern and Risk ... 27
Table 16 Component Hierarchy and Function Allocation ... 29
Table 17 External Interface Definition ... 30
Table 18 Internal Interface Definition .. 31
Table 19 Port Definitions ... 33
Table 20 Component Constraint Requirements.. 34
Table 21 Physical Architecture Concern or Risk... 35
Table 22 Verification Requirements .. 37
Table 23 Verification Planning .. 38
Table 24 Test Planning ... 40
Table 25 Change Management Support ... 41

System Definition Guide

v

CUSTOMER RESOURCE OPTIONS

Supporting users throughout their entire journey of learning model-based systems engineering (MBSE) is
central to Vitech’s mission. For users looking for additional resources outside of this document, please refer
to the links below. Alternatively, all links may be found at www.vitechcorp.com/online-resources/.

Webinars

Immense, on-demand library of
webinar recordings, including
systems engineering industry
and tool-specific content.

Screencasts

Short videos to guide users
through installation and usage of
GENESYS.

A Primer for Model-Based

Systems Engineering

Our free eBook and our most
popular resource for new and
experienced practitioners alike.

Help Files

Searchable online access to
GENESYS help files.

Technical Papers

Library of technical and white
papers for download, authored
by Vitech systems engineers.

Technical Support

Frequently Asked Questions
(FAQ), support-ticket web form,
and information regarding email,
phone, and chat support options.

Our team has also created resources libraries customized for your experience level:

All Resources Advanced

Beginner IT / Sys Admin

Intermediate Student

https://www.vitechcorp.com/online-resources/
https://www.vitechcorp.com/webinar-videos-on-demand/
https://www.vitechcorp.com/genesys-screencasts-on-demand/
https://www.vitechcorp.com/mbse-primer/
https://www.vitechcorp.com/mbse-primer/
https://www.vitechcorp.com/resources/GENESYS/onlinehelp/desktop/
https://www.vitechcorp.com/technical-papers/
https://www.vitechcorp.com/technical-support/
https://www.vitechcorp.com/online-resources/
https://www.vitechcorp.com/resources-for-advanced-users/
https://www.vitechcorp.com/resources-for-beginners/
https://www.vitechcorp.com/resources-for-it-and-systems-administrators/
https://www.vitechcorp.com/resources-for-intermediate-users/
https://www.vitechcorp.com/resources-for-students/
http://www.vitechcorp.com/webinars
http://www.vitechcorp.com/screencasts
http://www.vitechcorp.com/mbseprimer
http://www.vitechcorp.com/resources/GENESYS/onlinehelp/desktop/
http://www.vitechcorp.com/technicalpapers
http://www.vitechcorp.com/MySupport/support/default.aspx

System Definition Guide

vi

PREFACE
This System Definition Guide (SDG) provides a structured approach for populating a GENESYS™ project
with systems engineering design information using the GENESYS base schema. It presents topical actions
that must be accomplished in the context of the classic systems engineering activities of requirements
analysis, behavioral analysis, physical architecture synthesis, and verification and validation as illustrated
in Figure 1. Thus, the approach is consistent with commonly used systems engineering handbooks and
standards, company-unique Capability Maturity Model® Integration (CMMI) processes, and project-specific
Systems Engineering Plans (SEP) and Systems Engineering Management Plans (SEMP).

Figure 1 Systems Engineering Activities

This guide describes each activity and addresses the GENESYS schema classes used to capture the
associated information. Following the activity discussion is a schema diagram and table identifying the
principal schema classes, the classes’ attributes and relationships typically used for the described activity.
(Note: All the intrinsic relationships and targets are not presented to allow for focus on the key relationships
for the topic addressed. The relationships and attributes shown on the diagram are the minimum
recommended items that should be established when performing the referenced activity.) In addressing
each activity, attention is given to populating the repository in a manner that facilitates the production of
reports using the report writer provided with GENESYS. This guide describes the development of a system
design that results in standard documentation at minimal additional cost.

The graphics used have the classes color coded so that the user can
see at a glance if the class is a requirement element in the problem
domain, a functional element or physical element in the solution
domain, an interface element characterizing an exchange, a
verification element to demonstrate the suitability of the solution
architecture, or a broader concept.

This guide is intended to augment the Model-Based Systems
Engineering (MBSE) with GENESYS training course, including the
training course’s reference material, to help the student retain what

System Definition Guide

vii

was learned during the training class. The ultimate goal is to assist the systems engineer in making the
most effective project use of GENESYS. The approach is generic and is not exhaustive of all cases and
situations. The approach is written in the context of top-down systems engineering. The activities discussed
in this guide can be re-ordered for middle-out or reverse engineering.

The following additional resources are available for use with this guide:

• For descriptions of different views, behavior diagram notation, and the mechanics of entering data
into GENESYS, the reader is referred to the GENESYS Help/Documentation folder.

• For the definition of schema terms, the reader is referred to the GENESYS schema, which contains
descriptions for each schema entity.

System Definition Guide

viii

THIS PAGE INTENTIONALLY BLANK

System Definition Guide

1

INTRODUCTION
This guide outlines the first layer of a top-down design approach using the STRATA™ process. Reverse
engineering or bottom-up and middle-out design approaches are discussed, and outlined in the GENESYS
training class materials. The approach used in top-down design has elements common to all three design
approaches; therefore, it is important to understand the top-down methodology, which is emphasized in the
GENESYS training class materials. STRATA satisfies, among others, the following key aspects of a
complete systems engineering process:

• A convergent design approach leading to a realizable system solution provided such a system is
not precluded by the system requirements.

• A model-based approach, where a system design repository is an embodiment of the design using
a system design language.

• A layered and hierarchical approach, where the design is complete within a layer subject to the
granularity of the layer. Layer 1 is the most abstract, while the last layer is more fine-grained and
represents the top-level of the concrete (top-level physical) design.

• Design complexity is managed with this layered approach. The upper layers focus on a success-
oriented design. As the behavioral aspects are allocated to the physical architecture, it is in the
lower layers, where the impacts of physicality arise (error conditions, recovery, maintainability,
etc.) and add behavior to the design.

Figure 2 represents the STRATA layered approach.

Figure 2 STRATA MBSE Process

The vertical arrows in Figure 2 are of two sizes. The larger downward-pointing arrow indicates the main
workflow is focused on advancing the design to the next level of detail. The smaller upward arrow indicates
some of the design decisions at the current layer have an impact on the previous layer. The horizontal
arrows reflect the injection of source requirements into the current layer. All the source requirements are

System Definition Guide

2

not necessarily incorporated at the first layer because misallocation and distraction of engineering
resources may occur.

There are several key benefits to note; however, these are not all the benefits available through the
STRATA process. The key benefits are:

• Avoiding propagation of layer incompleteness errors into subsequent layers. A layer should be
completed before moving onto the next layer. Using this approach does not guarantee that there
will be no errors; only that the assumptions/decisions taken at the lower, subsequent layer are not
dependent upon decisions which have not been made in the higher, previous layer. This removes
a source of procedural errors, which is quite common with other approaches. A completed layer
represents the engineering baseline for configuration control purposes. There are clear criteria for
deciding when a layer is complete. Any iteration between layers only occurs between the current
layer and the previously completed layer. This operational constraint ensures convergence of the
process provided that the requirements lead to a feasible system.

• Where flaws exist, correction of them may occur without dire programmatic consequences.
Resolving an error is done once and it is unnecessary to search for possible error artifacts. By
framing and developing the solution in layers, STRATA ensures that assumptions, boundaries,
interfaces, functions, and architectures are convergent, consistent, and complete.

• The four engineering domains are worked concurrently. These domains are the Requirements
Domain, Behavior Architecture Domain, Physical Architecture Domain, and the Design Verification
and Validation Domain. The Design Verification and Validation Domain is contextually broader
than just validation and verification. This domain also includes all engineering studies, analyses,
experiments, prototypes, and the like. The starting domain varies with the problem type. Top-down
usually begins within the requirements domain, middle-out with the behavior domain, and bottom-
up (reverse engineering) with the architecture domain.

• Engineering documentation is available at the completion of a layer, in particular, deliverable
documentation. Formal specifications have different degrees of completion at each layer and each
draft has a degree of usability consistent with the granularity of the layer.

• Documentation is tolerant of rapid program changes. Consequently, the process is fail-safe. If the
systems engineering effort is stopped because of cost or schedule, consistent and usable
documentation is available from the last completed layer, which is not the usual case with other
approaches.

• Management has a clear idea of how complete the design is, the design’s direction, and its real
likelihood of completion.

System Definition Guide

3

REQUIREMENTS CAPTURE
This section is written assuming that the customer or end-user has been provided with a system
requirements specification. If that is not the case, it is assumed that systems engineering will start with the
task of collecting all stakeholder needs and transforming them into required functionality, and performance
and design constraints. The end result of this effort will be a collection of requirements that are treated as
originating (source) requirements (See Section 1.2).

1.1 Define Need and System Concept
Identify the system context and its mission. Physical entities, including the system of interest, external
systems, and other entities affecting the system (excluding links) need to be identified and are represented
in GENESYS as entities in the Component class. When creating a Component that represents the system,
the attributes listed in the Table 1 should be assigned values. A Component’s Type attribute designates
what the entity represents, in this case a system. The relationships and target classes associated with any
entity created here will be established in subsequent sections.

Table 1 System Definition

Entity Class Attributes Relations Target Classes
Component Abbreviation

Description
Doc. PUID
Mission
Number
Operations
Purpose
Receptions
Type: System
Values

1.2 Capture Source (Originating) Requirements
Capturing requirements from source documents involves the creation of entities in the GENESYS repository
in the following classes:

• Document: create an entity for each source document
• Requirement: create an entity for each source requirement
• ExternalFile: create an entity for each source requirement-related table or graphic
• DefinedTerm: create an entity for each pertinent acronym or special term in the source

requirement documentation

As part of extracting and populating the Requirement class, the following should be performed:

• Parse compound requirements into single, verifiable Requirement statements.1 These
should be linked to their parent Requirement using the refines/refined by relation.

• Place any requirement’s tables and graphics in separate files and reference them in the
project repository using ExternalFile entities where each entity augments the subject
Requirement to which it is related. When reports are utilized later on in the project, links are
used to include these external tables and graphics in the output immediately following the
entity Description and make entries in the List of Figures and List of Tables, as appropriate.

1 Capture each requirement statement in the Description attribute of the corresponding entity in the Requirement class.

System Definition Guide

 4

In order to properly number and label the tables and graphics for inclusion in the output, only
a single graphic or table should appear in each external file entity.

• Acronyms and/or special terms appearing in the source document should be captured in the
repository as DefinedTerms. For an acronym or abbreviation, the acronym is entered into
the Acronym attribute and what it stands for is entered as the name of the entity. For a special
term, the term is the name of the entity and its definition is entered into the Description
attribute. By filling in both the Acronym and Description attributes, appropriate entries will
appear in both the acronym and glossary sections of documents generated using the
GENESYS reports once the DefinedTerm is linked to the output Document using the used
by relation.

The following paragraphs contain information on special topics concerning the entry of source
requirements.

Extracting requirements from source documents. The entry of source requirements into a GENESYS
repository can be accomplished by copying and pasting the information from the originating document into
the entities in the repository. To do this the user should copy the text for a requirement from the originating
document and use the “Paste Unformatted” command in the Description attribute box for the requirement.
Alternatively, the document parser feature can be used to facilitate creation of the requirement entities.
Also, there is an option to import requirements from IBM® DOORS®, the process to accomplish this is
covered in the DOORS Connector Guide.

Setting the Origin attribute. It is important to determine the customer’s acceptable requirements
traceability. A customer may require traceability to the exact wording in a source document or may allow
traceability to parsed statements. Once this decision has been made; set the Origin attribute to “Originating”
for each Requirement in the document requirements hierarchy down through the lowest-level traceable
Requirements (i.e., those deemed originating by the customer). For all other Requirements, set the Origin
attribute to “Derived” (except those arising from the resolution of a Concern, for these, set the Origin
attribute to “Design Decision”).2 This will record which Requirements are originating and ensure that the
traceability matrix produced by the GENESYS reports trace to the correct source Requirement entities.

Establishing Doc. PUIDs. If the source documents have assigned Project-Unique Identifiers (PUIDs) to
the requirements, these should be captured in the repository in the Doc. PUID attribute of the Requirement.
If PUIDs have not been pre-assigned, it is advisable to assign one to each originating Requirement. This
can be done manually or by utilizing the Assign Documentation PUID wizard under the Project Tab.

Note: If available, Doc. PUIDs are automatically output by all of the included reports. To take advantage of
this feature, Doc. PUIDs should be assigned to entities in the following classes: Component, Function,
Item, Link, Mode, Requirement, State, UseCase, and VerificationRequirement.

2 The terms Originating, Derived, and Design Decision distinguish customer source requirements, directly attributable
requirements, and requirements stemming from engineering decisions respectively.

System Definition Guide

5

Figure 3 Source Requirements

Table 2 Source Requirements

Entity Class Attributes Relations Target Classes
Component

(Type: System)
See Section 1.1 documented by

(documents)
Document

DefinedTerm Acronym
Description

used in (uses) Document

Document CDRL Number
Contract Line Item

Number
Description
Document Date
Document Number
External File Path
either3

Govt. Category
or

Non-Govt. Category
Number
Revision Number
Type

documents
(documented by)4

Component
(Type: System)

Requirement
UseCase

uses (used in) DefinedTerm

ExternalFile Description
External File Path
Number
Page Orientation
Title
Type

augments
(augmented by)5

Requirement

3 These attributes are used when the source document is to be listed as an applicable document in a report generated
from the repository. See Section 1.4 for an explanation.
4 Only the top-level Requirements need to be documented by the source Document. The included reports search up
the requirements hierarchy to locate the source Document.
5 The Position attribute of this relationship should be set to control the order in which multiple external files are appended
to the Requirement’s Description attribute when it is output in reports generated from the repository.

System Definition Guide

 6

Table 2 Source Requirements

Entity Class Attributes Relations Target Classes
Requirement

(Origin: Originating)
Description
Doc. PUID
Incentive Performance

Parameter
Key Performance

Parameter
Number
Paragraph Number6

Paragraph Title
Rationale
Type
Weight Factor

augmented by
(augments)5

ExternalFile

documented by
(documents)

Document

refined by (refines) Requirement

Warning: Note that text attributes do not support embedded tables and graphics. Therefore, tables and
graphics should be captured as ExternalFile entities.

1.3 Define System Boundary
Based on an examination of the originating requirements or related source documents, identify the system
boundary and context. To define the boundary, identify each external with which the system must interface.
An external is represented as a Component and may identify the system’s environment, an actual external
system, or a human. Create a Component entity representing the context and decompose it into the system
and its externals using the built from relation. Set the Type attribute as appropriate for each Component.
Note that humans may be considered as part of the system or as external to the system depending on the
actions they take or the roles they play in performing the system functions. In many cases, there are humans
who are part of the system and humans who are external to the system.

To complete the system boundary definition, identify all interfaces between the system and each external
by creating entities in the Link class. Defining a Link entity establishes that the system interacts with an
external. Typically, there will be only one interface between the system and each external. The details of
the interface are characterized by child Link entities (See Section 1.16).

Figure 4 System Boundary

6 Used to record the source document paragraph number and title for an originating Requirement.

System Definition Guide

7

Table 3 System Boundary

Entity Class Attributes Relations Target Classes
Component

(Type: Context)
Description
Number

built from (built in) Component
(Type: System,

Environment,
External System, or
Human)

Component
(Type: Environment,

External System, or
Human)

Abbreviation
Description
Number

built in (built from) Component
(Type: Context)

connected to
(connects)

Link

Component
(Type: System)

See Section 1.1 built in (built from) Component
(Type: Context)

connected to
(connects)

Link

Link Description
Doc. PUID
Number

connects
(connected to)

Component
(Type: System and

Environment,
External System, or
Human)

Suggestion: Create a folder for the context and externals in order to separate them from the evolving
system component hierarchy. Typically, the context and externals are given a different numbering scheme
than the entities in the system component hierarchy in order to differentiate them in GENESYS views such
as the Physical Block Diagram and Hierarchy diagrams.

1.4 Collect Additional Applicable Documents
Identify any other applicable or reference documents such as standards, regulatory documents, and
Interface Control Documents for interfaces to existing external systems. These or specific portions of these
documents may be referenced in the source requirements. If needed, extract additional Requirements
from the applicable or reference documents.

Figure 5 Applicable Documents and Requirements

System Definition Guide

 8

Table 4 Applicable Documents and Requirements

Entity Class Attributes Relations Target Classes
Component

(Type: System)
See Section 1.1 documented by

(documents)
Document

DefinedTerm See Section 1.2 uses (used in) Document
Document See Section 1.2 documents

(documented by)
Component
Link
Requirement

uses (used in) DefinedTerm
ExternalFile See Section 1.2 augments

(augmented by)7
Requirement

Link See Section 1.3 documented by
(documents)

Document

Requirement See Section 1.2 augmented by
(augments)5

ExternalFile

documented by
(documents)

Document

refined by (refines) Requirement

Suggestion: Create folders to group source documents and applicable documents.

7 The Position attribute of this relationship should be set to control the order in which multiple external files are appended
to the requirement description when it is output in reports.

System Definition Guide

9

REQUIREMENTS ANALYSIS
Requirements analysis involves a collection of concurrent, inter-related activities. These are addressed in
the following subsections.

1.5 Parse Originating Requirements
If not previously done when capturing source Requirements (See Section 1.2), parse the originating
Requirements into single, verifiable Requirements statements. This parsing can result in Concerns to be
resolved. These should be identified as described in Section 1.6 below. See Section 1.2 for a discussion of
Originating vs. Derived or Design Decision Requirements.

Figure 6 Derived Requirements

Table 5 Derived Requirements

Entity Class Attributes Relations Target Classes
Requirement

(Origin: Originating)
Description
Doc. PUID
Number
Rationale
Type
Weight Factor

refined by (refines) Requirement
(Origin: Derived)

1.6 Identify Requirement Concerns and Risks
Requirement Concerns. Examine each parsed source Requirement, capturing any questions or
problems identified by creating Concern entities. The assignment of resolution responsibility to an
individual or organization is captured by the assigned to relation between the Concern entity and an
Organization entity. The resolution of a Concern may require customer involvement and/or trade studies.
These should be captured in the repository using the Document entity and linked to the Concern using
the documented by relation. The resolution of a Concern is not a requirement in itself but generally either
results in a design decision Requirement, or the addition or clarification of one or more other
Requirements. Any resultant Requirement (Origin attribute set to “Design Decision”) should be linked to
both the Concern (result of relation) and the Requirement(s) (refines relation) that generated the Concern.

Requirement Risks. Risks are possible problems that are significant enough to potentially affect the
achievement of a major program objective or milestone. Because the information needed is different than
that of a Concern, Risk is a separate entity class in GENESYS. Requirements are among the many
sources of program risk. Therefore, examine each leaf-level source Requirement and identify any Risks.
Systems engineers or risk management personnel, depending on the project organization, may enter or
manage Risks in GENESYS. Generally, ProgramActivity or ProgramElement risks are addressed in the
Program Management Facility. Details of program management are not addressed in this guide. Any risk
status graphs should be identified as ExternalFiles and linked to the Risk using the augments relation.
Similarly, any risk status reports should be identified as Documents and linked to the Risk using the
documents relation. For more information on Risk Management refer to section 1.7.

System Definition Guide

 10

Figure 7 Requirement Concerns and Risks

Table 6 Requirement Concerns and Risks

Entity Class Attributes Relations Target Classes
Concern Alternatives

Assumptions
Decision
Description
Date Closed
Due Date
Importance
Number
Originator
Rationale
Status

assigned to
(responsible for)

Organization

augmented by
(augments)

ExternalFile

documented by
(documents)

Document

generated by
(generates)

Requirement

results in (result of) Requirement

Document See Section 1.2 documents
(documented by)

Concern
Risk

ExternalFile See Section 1.2 augments
(augmented by)

Concern
Risk

Function Description
Doc. PUID
Duration

result of (results in) Concern

Organization Abbreviation
Description
Number
Role

responsible for
(assigned to)

Concern
Risk

Requirement See Sections 1.2 and
1.5

causes (caused by) Risk
generates
 (generated by)

Concern

System Definition Guide

11

Table 6 Requirement Concerns and Risks

Entity Class Attributes Relations Target Classes
refined by (refines) Requirement
result of (results in) Concern

Risk Consequence
Description
Handling Approach
Likelihood
Number
Risk Rating
Risk Score
Scoring Rationale
Significance
Status
Trigger Date
Type

assigned to
(responsible for)

Organization

augmented by
(augments)

ExternalFile

caused by (causes) Requirement
documented by
(documents)

Document

1.6.1 Informal Comments using the Note Class
The Note class may be used to provide informal comments (additional information or queries) regarding
the characteristics of a particular entity in the design model. A Note may be related to any other entity in
the model. The Note properties allow the design team to status a Note, provide a decision on incorporating
the Note, and elevate the importance of the Note by relating the Note to a ChangeRequestPackage,
Concern, or Risk.

Figure 8 Note Class

Table 7 Note Class

Entity Class Attributes Relations Target Classes
Note Decision

Description
Status
Type

comments on
(has comments)

Entity

documented by
(documents)

Document

identifies (identified by) Nexus
Risk

1.7 Risk Management
Risks are possible problems that are significant enough to potentially affect the achievement of a major
program objective or milestone. Risks can be defined as the degree of exposure to an event that might
happen to the detriment of a program, project, or other activity. Risks are described by a combination of the

System Definition Guide

 12

probability that the risk event will occur and the consequence of the extent of loss from the occurrence, or
impact. Risk is an inherent part of all activities, whether the activity is simple and small, or large and
complex.

1.7.1 Typing Risks
Risks are typed into four main categories, as defined by the INCOSE Systems Engineering Handbook v4
(pg. 220):

• Technical Risk – The possibility that a technical requirement of the system may not be
achieved in the system life cycle. Technical risk exists if the system may fail to achieve
performance requirements; to meet operability, producibility, testability, or integration
requirements; or to meet environmental protection requirements. A potential failure to meet
any requirement that can be expressed in technical terms is a source of technical risk.

• Cost Risk – The possibility that available budget will be exceeded. Cost risk exists if a) the
project must devote more resources than planned to achieve technical requirements, b) the
project must add resources to support slipped schedules due to any reason, c) if changes
must be made to the number of items to be produced, or d) if changes occur in the
organization or national economy. Cost risk can be predicted at the total project level or for a
system element. The collective effects of element-level cost risk can produce cost risk for the
total project.

• Schedule Risk – The possibility that the project will fail to meet scheduled milestones.
Schedule risk exists if there is inadequate allowance for acquisition delays. Schedule risk
exists if difficulty is experienced in achieving schedule technical accomplishments, such as
the development of software. Schedule risk can be incurred at the total project level for
milestones such as deployment of the first system element. The cascading effects of element-
level schedule risks can produce schedule risk for the total project.

• Programmatic Risk – Produced by events that are beyond the control of the project
manager. These events often are produced by decisions made by personnel at higher levels
of authority, such as reductions in project priority, delays in receiving authorization to proceed
with a project, reduced or delayed funding, changes in organization or national objectives,
etc. Programmatic risk can be a source of risk in any of the other three risk categories.
(INCOSE, pg. 220).

If a program requires additional categories, these may be added via the schema editor. Typical additional
categories may include “security” or “safety.” Safety, in particular, may be a useful category if the user or
user’s organization wishes to utilize risk management as a lightweight means of conducting safety hazards
analysis.

1.7.2 Risk Process
A number of standards define similar steps for holistic risk management, including the INCOSE Systems
Engineering Handbook (v4), the Risk Management Guide for DOD Acquisition (sixth edition), and the NASA
Risk Management Handbook (NASA/SP-2011-3422 version 1.0). A consolidated continuous risk
management process consists of the following steps:

• Risk Identification
• Risk Analysis
• Risk Handling Planning
• Risk Handling Plan Implementation
• Risk Tracking

1.7.2.1 Risk Identification
Risk identification is usually a group brainstorming activity, assessing the requirements, state of the design,
external forces and conditions on the project, etc. This is where risks are generated, and documented. This
should be a recurring step. At this point a description, the type, and status should be set, at a minimum. In
a program that used multi-tiered risk management identification processes (say for example at the

System Definition Guide

13

component level and the system level), lower level Risks could lead to high level Risks. In this way, one
can show the traceability between Risks.

1.7.2.2 Risk Analysis
Risks are typically analyzed in at two dimensions: likelihood and impact/consequence. GENESYS supports
a standard 1 to 5 rating in each of these dimensions, allowing for risks to be plotted on a standard 5x5 risk
cube.

Likelihood is the probability of occurrence of the risk. The 1 to 5 ratings are defined in probability bands as:

1 - (0% < p < 20%)
2 - (20% <= p < 40%)
3 - (40% <= p < 60%)
4 - (60% <= p < 80%)
5 - (80% <= p < 100%)

Consequence is the severity of adverse effects stemming from the risk. The 1 to 5 ratings are defined in
probability bands as:

1 - Minimal or no consequence to technical performance.
2 - Minor reduction in technical performance or supportability, can be tolerated with little or no

impact on program.
3 - Moderate reduction in technical performance or supportability with limited impact on program

objectives.
4 - Significant degradation in technical performance or major shortfall in supportability; may

jeopardize program success.
5 - Severe degradation in technical performance; cannot meet KPP or key technical/supportability

threshold; will jeopardize program success.

Additionally, the Trigger Date should be determined. The Trigger Date is when the risk owner/estimator
believes that the risk event will occur, at which time it will become known if the risk occurred and is now an
issue or if it has not occurred and the risk can be retired. Trigger Date is a useful field, which allows the
team to ensure that risks with upcoming trigger dates are reviewed more frequently.

1.7.2.3 Risk Handling Planning
While we typically think of mitigating risks, there are additional options. The four standard risk handling
approaches, as defined by the INCOSE Systems Engineering Handbook, v4 (pg. 120) are:

• Avoid the risk through change of requirements or redesign
• Accept the risk and do no more
• Mitigate the risk by expending budget and other resources to reduce likelihood and/or occurrence

o These should have Mitigation Activities developed and related to the risk
• Transfer the risk by agreement with another party that it is in their scope to mitigate

o These risks should be associated with an Organization entity using the assigned to
relationship

GENESYS supports definition of the handling approach via the Handling Approach attribute. Handling
approaches should at least be established for the moderate and high-risk items, at a minimum. One may
choose to modify the handling approach as time progresses.

If the handling approach results in a needed change to the requirements, functional architecture, physical
architecture, V&V, or program structure, a ChangeRequestPackage can be generated if a formal record
of the change is needed. Otherwise, the impacted entities can be identified via the impacts relationship. A
combination of the Handling Approach attribute, the Status attribute, and the entity at the target of the
impacts relationship defines the configuration of the change.

System Definition Guide

 14

1.7.2.4 Risk Tracking
The status of Risks and their Handling Approaches should be assessed periodically. This may result in the
Risk’s Likelihood, Consequence, and the resultant Risk Rating and Risk Score being updated based on
changing program circumstances or progress of the handling activities. The Status will also change as the
Risk moves though its lifecycle.

A Risk could impact a number of other entities if it is realized. The impacted entities in the model can be
identified by setting the Status attribute to “realized” and created an impacts relationship to the impacted
entity.

Any risk status graphs should be captured as ExternalFile entities and linked to the Risk using the
augments relation. Similarly, any risk status reports should be captured as Document entities and linked to
the Risk using the documents relation.

Figure 9 Risk Management

Table 8 Risk Management

Entity Class Attributes Relations Target Classes
ChangeRequestPackage Alternatives

Assumptions
Change Request
Number
Date Closed
Decision
Description
Due Date
Importance
Originator
Rationale
Status

generated by
(generates)

MitigationActivity
Risk

Component See Section 1.1 impacted by
(impacts)

Risk

Document See Section 1.2 documents
(documented by)

Risk

ExternalFile See Section 1.2 augments
(augmented by)

Risk

System Definition Guide

15

Table 8 Risk Management

Entity Class Attributes Relations Target Classes
Port Abbreviation

Description
Direction
Doc. PUID

impacted by
(impacts)

Risk

Function See Section 1.6 impacted by
(impacts)

Risk

Item Accuracy
Description
Doc. PUID
Fields
Precision
Priority
Range
Size
Size Units
Type
Units

impacted by
(impacts)

Risk

Link See Section 1.3 impacted by
(impacts)

Risk

Organization See Section 1.6

assigned to
(responsible for)

Risk

impacted by
(impacts)

Risk

MitigationActivity Description
Duration
End Date
Planned End Date
Planned Start Date
Result
Start Date
Status

generated
(generated by)

ChangeRequestPackage

mitigates
(mitigated by)

Risk

ProgramActivity Description
Duration
End Date
Number
Planned End Date
Planned Start Date
Start Date

causes
(caused by)

Risk

impacted by
(impacts)

Risk

ProgramElement Contract Number causes
(caused by)

Risk

System Definition Guide

 16

Table 8 Risk Management

Entity Class Attributes Relations Target Classes
Cost
Description
End Date
Labor Hours
Non-recurring Cost
Number
Start Date
Type

impacted by
(impacts)

Risk

Requirement

See Section 1.2 impacted by
(impacts)

Risk

Risk See Section 1.6 assigned to
(responsible for)

Organization

augmented by
(augments)

ExternalFile

caused by
(causes)

Organization
ProgramActivity
ProgramElement
Requirement

documented by
(documents)

Document

generates
(generated by)

ChangeRequestPackage

impacts
(impacted by)

Component
Port
Function
Item
Link
Organization
ProgramActivity
ProgramElement
Requirement

leads to
(comes from)

Risk

mitigated by
(mitigates)

MitigationActivity

1.8 Generate Mitigation Activities
For those Risks that are to be handled via mitigation, GENESYS provides a class called
MitigationActivity. A MitigationActivity is an action performed to reduce either the probability of
occurrence or consequence/impact of an uncertainty element. A MitigationActivity may mitigate one or
more risks. It may impact a Component, Requirement, Function, Link, ProgramActivity,
ProgramElement or Organization. It may results in a new or updated Requirement or Function.

System Definition Guide

17

Often, programs require that mitigation activities be captured as tasks or activities in the program’s
Integrated Master Schedule. In GENESYS, MitigationActivities can be exported to MS Project via the
GENESYS MS Project Connector.

Figure 10 Mitigation Activities

Table 9 Mitigation Activities

Entity Class Attributes Relations Target Classes
ChangeRequestPackage

See Section 1.7 generated by
(generates)

MitigationActivity
Risk

impacts
(impacted by)

Component
Port
Function
Item
MitigationActivity
Organization
Product
ProgramActivity
ProgramElement
Requirement
TestActivity
TestItem
VerificationRequirement

results in (result of) Function
Requirement

Component See Section 1.1 impacted by
(impacts)

MitigationActivity

Port See Section 1.7 impacted by
(impacts)

MitigationActivity

Function See Section 1.6 impacted by
(impacts)

MitigationActivity

System Definition Guide

 18

Table 9 Mitigation Activities

Entity Class Attributes Relations Target Classes
result of (result in) ChangeRequestPackage

Item See Section 1.7 impacted by
(impacts)

MitigationActivity

Link See Section 1.3 impacted by
(impacts)

MitigationActivity

MitigationActivity See Section 1.7 decomposed by
(decomposes)

MitigationActivity

generated
(generated by)

ChangeRequestPackage

impacted by
(impacts)

MitigationActivity

mitigates
(mitigated by)

Risk

Organization See Section 1.6 impacted by
(impacts)

MitigationActivity

Product Accuracy
Description
Doc. PUID
Fields
Precision
Priority
Range
Size
Size Units
Type
Units

impacted by
(impacts)

MitigationActivity

ProgramActivity See Section 1.7 impacted by
(impacts)

MitigationActivity

ProgramElement See Section 1.7 impacted by
(impacts)

MitigationActivity

Requirement See Sections 1.2 and
1.5

impacted by
(impacts)

MitigationActivity

result of (results in) ChangeRequestPackage
Risk See Section 1.6 mitigated by

(mitigates)
MitigationActivity

TestActivity Completion Criteria
Description
Duration
End Date
Prerequisite
Special Comments
Start Date
Timeout
Type

impacted by
(impacts)

MitigationActivity

System Definition Guide

19

Table 9 Mitigation Activities

Entity Class Attributes Relations Target Classes
TestItem Description

Priority
Size
Size Units
Type

impacted by
(impacts)

MitigationActivity

VerificationRequirement Description
Doc. PUID
Level
Method
Number
Status

impacted by
(impacts)

MitigationActivity

1.9 Characterize Requirements and Categorize Constraints
Requirements may also be characterized as one of the following:

• Constraint (i.e., limitation on the design or construction of the system)
• Functional (i.e., what the system must do)
• Incentive Award Fee Criterion (i.e., programmatic or other requirements affecting a

contractor’s fees for meeting or exceeding the requirement)
• Performance (i.e., how well the system or function must perform)
• Programmatic (i.e., program management constraints)
• Test (i.e., test constraints)
• Verification (i.e., acceptance criteria).

This aspect of a requirement is captured in the repository by setting the Requirements Type attribute to
the appropriate value. If a determination cannot be made, parse the Requirement into a set of
Requirements where each Requirement is only one of the seven types.

Link the system-level physical constraint Requirements to the system Component using the specifies
relation. As the system component hierarchy evolves, a constraint Requirement should be linked to all of
the Components to which it applies (i.e., a constraint Requirement may apply to the descendants of a
Component as well as the Component). See Section 0 for a discussion of constraints on lower-level
Components and constraint hierarchies.

Constraint Categorization. For each Requirement that is a constraint, categorize it by a Category that
represents the appropriate requirements domain, such as Reliability, Transportability, Electromagnetic
Radiation, etc. These domains correspond to the non-functional leaf-level Requirements sections typically
found in a System/Segment Specification or other specification.

Figure 11 Constraint Requirements

System Definition Guide

 20

Table 10 Constraint Requirements

Entity Class Attributes Relations Target Classes
Category Description categorizes

(categorized by)
Requirement

(Type: Constraint)
included in (includes) Category

Component
(Type: System)

See Section 1.1 specified by (specifies) Requirement
(Type: Constraint)

Requirement
(Type: Constraint)

See Section 1.2

categorized by
(categorizes)

Category

specifies (specified by) Component
(Type: System)

BEHAVIORAL ANALYSIS

1.10 Identify States (If Needed)
For some projects, the customer expects to represent behavior using States and Modes rather than using
Functions. A State identifies a non-overlapping (i.e., one State does not share its behavior with another
State) behavioral and possibly repetitive condition occurring during a component’s operating lifetime. In
other words, the set of States exhibited by a Component are complete for expressing a Component’s
behavior including its timing. Alternative State representations are possible, but each set definition must be
complete and non-overlapping (i.e., the State universe may be partitioned in more than way, but each
partition needs to be complete and unique).

A State may exist either because it is documented by a Document or specified by a Requirement. An
ExternalFile or Text entity may also augment a State for the purpose of further enhancing the meaning or
representation of the State.

A given State may be a member of a particular subset of States. The collection of such States is
represented as a Mode; this is shown as the State encompassed by a Mode. A Component exhibits a
State and also contains a Mode. Each State incorporates one or more Functions. Associated with the
incorporates relation are two attributes – Entry and Exit. The relationship attribute ”Entry” set to True
indicates the behavior is performed upon entry into the State. The relationship attribute ”Exit” set to True
indicates the behavior is performed immediately before exiting the State. A target of the relationship where
the Behavior Type attribute value of “Integrated (Root)” indicates behavior that is performed once the “Entry”
behavior completes and continues until it finishes or the State exits.

One or more subordinate States may decompose a parent State, which delineates the progression from a
composite State to an atomic State (an atomic State is identified by the absence of targets for the
decomposed by relation). The movement from one State to another State occurs through a Transition. A
State is exited by a Transition and correspondingly, the Transition enters a new State or may re-enter
the same State. However, the timing of the Transition’s effect is governed by a Guard Condition attribute.
The Guard Condition attribute is a rule, which may be empty, simple, or complex. It evaluates to a Boolean
value. (An empty Guard Condition is not evaluated, so that the new state is entered without impediment).
If the Guard Condition is true, the transition occurs; otherwise, the transition waits for the Guard Condition
to change from false to true at which point the new State is entered.

Events serve to communicate to external State machines at the time point of a Transition. A Transition
is triggered by an Event and an Event is responsible for an Item, which conveys the message governed
by the Event.

System Definition Guide

21

Figure 12 States View

Table 11 States View

Entity Class Attributes Relations Target Classes
Component

(Type: System)
See Section 1.1 built from (built in) Component

contains (contained by) Mode
exhibits (exhibited by) State

Document See Section 1.2 documents
(documented by)

Mode
State

Event Description

documented by
(documents)

Document

responsible for
(assigned to)

Item

triggers (triggered by) Transition
ExternalFile See Section 1.2 augments

(augmented by)8
State

Function See Section 1.6 incorporated by
(incorporates)

State

services (serviced by) Transition
Item See Section 1.7 assigned to

(responsible for)
Event

Mode Description
Number

contained by (contains) Component
documented by
(documents)

Document

8 The Position attribute of this relationship should be set to control the order in which multiple external files are appended
to the requirement description when it is output in formal documentation generated from the repository.

System Definition Guide

 22

Table 11 States View

Entity Class Attributes Relations Target Classes
encompasses
(encompassed by)

State

specified by (specifies) Requirement
Requirement See Sections 1.2, 1.5,

and 1.9
specifies (specified by) Mode

State
State Description

Doc. PUID
Number
Title

augmented by
(augments)

ExternalFile

decomposed by
(decomposes)

State

documented by
(documents)

Document

encompassed by
(encompasses)

Mode

entered by (enters) Transition
exhibited by (exhibits) Component
exited by (exits) Transition
incorporates
(incorporated by)

Function

specified by (specifies) Requirement
Transition Delay

Delay Units
Description
Guard
Number

documented by
(documents)

Document

enters (entered by) State
exits (exited by) State
triggered by (triggers) Event

1.11 Use Cases (If Needed)
On some projects, use cases are used instead of threads or scenarios. In other instances, use cases are
precursors to the development of system requirements, which lead to the development of threads or
scenarios. Identify any system use cases and instantiate them by creating UseCase entities. A UseCase
entity describes a Component to which the use case is applicable. A UseCase entity involves a
Component fulfilling the role of an actor in the use case. A UseCase entity is elaborated by either a
Function entity, a ProgramActivity entity or a TestActivity entity depending upon whether the use case
affects a system behavior, program management behavior, or test behavior.9 A UseCase entity may be
extended by a UseCase to add additional specificity to the use case. A UseCase entity elicits a
Requirement. An external use case diagram may be referenced in the repository by creating an
ExternalFile entity that augments a UseCase entity.

9 In this instance, the resulting behaviorType of a Function, ProgramActivity, or TestActivity would be set to “Thread.”

System Definition Guide

23

Figure 13 Use Case Application

Table 12 Use Case Application

Entity Class Attributes Relations Target Classes
Component See Section 1.1 described by

(describes)
UseCase

participates in
(involves)

UseCase

ExternalFile See Section 1.2 augments
(augmented by)10

UseCase

Function See Section 1.6 elaborates
(elaborated by)

UseCase

ProgramActivity See Section 1.7 elaborates
(elaborated by)

UseCase

Requirement See Sections 1.2 and
1.5

elicited by (elicits) UseCase

TestActivity See Section 1.8 elaborates
(elaborated by)

UseCase

UseCase Alternate Flow
Description
Number
Postconditions
Preconditions
Primary Flow

augmented by
(augments)7

ExternalFile

describes
(described by)

Component

elaborated by
(elaborates)

Function
ProgramActivity
TestActivity

extends (extended by) UseCase
includes (included in) UseCase
involves
(participates in)

Component

10 The Position attribute of this relationship should be set to control the order in which multiple external files are
appended to the requirement description when it is output in formal documentation generated from the repository.

System Definition Guide

 24

1.12 Develop the System Behavioral Hierarchy
Behavioral analysis in GENESYS begins with defining the major threads through the system and culminates
in an integrated behavior view of the system and actions allocated to subcomponents. For the system, a
top-level Function should be defined and allocated to the Component of type System. The attribute
behaviorType should be set to “Integrated (Root)” in order to identify that this top-level Function represents
the totality of functionality performed by the system and is decomposed (hierarchically) into all of the
functions performed by the system. The root Function is decomposed into the primary Functions of the
system.

Function Traceability. If a Function is identified in direct response to an originating Requirement or to a
Concern decision, the Function should be linked to the causal originating entities, using either the based
on (basis of) or result of (results in) relations. Thus, establishing requirements traceability beyond the
Function hierarchy. This also supports the use of Functions as requirements, i.e. the inclusion of “shall”
in the Function Description.

State Mapping. If a State entity has been defined (See Section 1.10), it should be linked to the first-level
(i.e., non-root level) Functions using the incorporates relation to identify which Functions and their
descendants are included in each State. Some of these lower–level Functions services Transition
entities.

Function Allocation. In conjunction with Physical Architecture Synthesis (See Section 1.15), for each layer
of Components, Functions are decomposed until they can be uniquely allocated to the next level of
Component in the component hierarchy. The allocation of these functions are considered standard, that
is, non-root. When generating written reports, this functional hierarchy and allocation provides the
organizational foundation for the assignment of performance Requirements in a Component specification
and the Functions performed (i.e., Function specified by Requirement).

Function Inputs and Outputs. For each Function in the evolving functional hierarchy, input and output
Items are identified and associated using the relations: input to (inputs) and output from (outputs). When
Functions are allocated in conjunction with Physical Architecture Synthesis (See Section 1.15), these
Items form part of the definition of the component interfaces (See Sections 1.16 and 1.17). As with
Functions, Items should be aggregated to simplify presentation.

Note: When doing behavior development, a root Function can be established for any Component and the
behavior diagram built using the allocated Functions to define the full behavior of the Component from
the Component’s perspective rather than from the system’s perspective. These lower-level root Functions
do not appear in the system functional hierarchy, but act as access points into the hierarchy. Reports in
GENESYS use either root or atomic Functions, whichever allocation is present.

System Definition Guide

25

Figure 14 Behavioral Decomposition

Table 13 Behavioral Decomposition

Entity Class Attributes Relations Target Classes
Component

(Type: System)
See Section 1.1 built from (built in) Component

exhibits (exhibited by) State
performs (allocated to)

Function

Function See Section 1.10
(Behavior Type:
Integrated (Root))11

allocated to (performs)

Component

based on (basis of) Requirement
decomposed by
(decomposes)

Function

inputs (input to) Item
outputs (output from) Item
result of (results in) Concern

Concern See Section 1.6 results in (result of) Function
Requirement

Item See Section 1.7 decomposed by
(decomposes)

Item

input to (inputs) Function
output from (outputs) Function

Mode See Section 1.10 encompasses
(encompassed by)

State

11 A Component should have only one root Function.

System Definition Guide

 26

Table 13 Behavioral Decomposition

Entity Class Attributes Relations Target Classes
specified by (specifies) Requirement

Requirement See Sections 1.2 and
1.5

basis of (based on) Function

State See Section 1.10 decomposed by
(decomposes)

State

encompassed by
(encompasses)

Mode

entered by (enters) Transition
exhibited by (exhibits) Component
exited by (exits) Transition

Transition See Section 1.10 enters (entered by) State
exits (exited by) State
serviced by (services) Function

1.13 Refine and Allocate Functional Performance Requirements
As the functional hierarchy is developed, decompose and allocate performance Requirements to
Functions. This may be a complex process, particularly if it involves a domain change or trade studies that
assimilate multiple performance Requirements to reach a design decision. The result of the design
decision, captured as a Requirement whose Origin attribute is set to Design Decision, may result in multiple
Functions and performance Requirements as well as constraint Requirements. If this is a major design
decision, it should be augmented with a Concern to capture Concern-type information that is not normally
captured by a Requirement.

Since Functions may be aggregated to enhance understanding, not every Function will have performance
Requirements; however, Functions allocated to a Component should have performance Requirements
to clearly define how well the functions must be performed in terms of such characteristics as timing and
accuracy. Performance Requirements are inseparable from their associated Functions. Thus, only the
Function is allocated to a Component (i.e., the performance Requirement for an allocated Function
should not be linked with the specifies relation to the performing Component).

Figure 15 Performance Requirements

System Definition Guide

27

Table 14 Performance Requirements

Entity Class Attributes Relations Target Classes
Function See Section 1.6 decomposed by

(decomposes)
Function

specified by (specifies) Requirement
Requirement See Sections 1.2 and

1.5
refined by (refines) Requirement
specifies (specified by) Function

1.14 Capture Behavioral and Performance Concerns and Risks
While developing the system’s functional hierarchy and deriving the associated performance
Requirements, additional Concerns and Risks may be identified. They should be captured in the
repository in a manner analogous to Concerns and Risks resulting from the analysis of originating
Requirements (See Section 1.6).

Figure 16 Functional or Performance Requirement Concern and Risk

Table 15 Functional or Performance Requirement Concern and Risk

Entity Class Attributes Relations Target Classes
Document See Section 1.2 documents

(documented by)
Concern
Risk

ExternalFile See Section 1.2 augments
(augmented by)

Concern
Risk

Function See Section 1.6 decomposed by
(decomposes)

Function

causes (caused by) Risk
generates
(generated by)

Concern

System Definition Guide

 28

Table 15 Functional or Performance Requirement Concern and Risk

Entity Class Attributes Relations Target Classes
result of (results in) Concern

Concern See Section 1.6 assigned to
(responsible for)

Organization

documented by
(documents)

Document

generated by
(generates)

Function
Requirement

results in (result of) Function
Requirement

Organization See Section 1.6 responsible for
(assigned to)

Concern
Risk

Requirement See Sections 1.2 and
1.5

causes (caused by) Risk
generates
(generated by)

Concern

refined by (refines) Requirement
result of (results in) Concern

Risk See Section 1.6 assigned to
(responsible for)

Organization

augmented by
(augments)

ExternalFile

caused by (causes) Function
Requirement

PHYSICAL ARCHITECTURE SYNTHESIS

1.15 Allocate Functions to Next Level of Components
In conjunction with the analysis of requirements, behavioral decomposition, and assessment of component
technology, the process activity identifies the next layer of Components in the system component
hierarchy.

As the component hierarchy evolves, Functions are allocated to Components. This allocation is
performed in layers. When a decomposed Function is allocated to a Component, all lower-level
Functions in its decomposition become part of the Component’s behavior. The Component may be
further decomposed, in which case even lower-level Functions are allocated to the lower-level
Components. At the leaf-level, these allocations are termed Standard. Since Functions can be
aggregated to enhance understanding, there is not a one-to-one correspondence between levels in the
Function hierarchy and levels in the Component hierarchy.

Note: As stated in Section 1.11, when doing behavior development, a root Function may be established
for any Component and the behavior diagram built using the allocated atomic Functions. This defines the
full behavior of the Component from the Component’s perspective rather than from the system
perspective. These lower-level root Functions for lower-level Components do not appear in the system
functional hierarchy, but act as access points into the hierarchy.

System Definition Guide

29

Figure 17 Component Hierarchy and Function Allocation

Table 16 Component Hierarchy and Function Allocation

Entity Class Attributes Relations Target Classes
Component See Section 1.1 built from (built in) Component

performs (allocated to) Function
Function See Section 1.6 allocated to (performs) Component

decomposed by
(decomposes)

Function

1.16 Refine External Interface Definitions
An external interface entity identifies the fact that the system communicates in some manner with an
external Component (See Section 1.3). Other details of the interface are captured in Link entity definitions.
The Link class is decomposable using the includes (included in) relation pair. As the system component
hierarchy evolves, the terminus point for Links must change. One may use a child Link to connect to the
correct lower-level Components. Thus, using the child connections simplifies the maintenance of the
connections as the interface design proceeds.12 Otherwise, the systems engineer must disconnect and
reconnect the Link to the lower-level component. This allows Links to retain their conceptual identity even
though their child connection end points change as the component hierarchy grows in depth. The
components that provide the Items for the Links are determined by the functional allocation.

Links may be specified by performance and constraint Requirements. Only the lowest layer of Items
should be transferred by a Link.

12 If the remaining terminus of the Link does not change, which may occur with an external Component, the child Link
will coincidently terminate with the parent Link.

System Definition Guide

 30

Figure 18 External Interface Definition

Table 17 External Interface Definition

Entity Class Attributes Relations Target Classes
Component See Section 1.1 built from (built in) Component

connected to
(connects to)

Link

performs (allocated to) Function
Function See Section 1.6 allocated to (performs) Component

decomposed by
(decomposes)

Function

inputs (input to) Item
outputs (output from) Item

Item See Section 1.7 decomposed by
(decomposes)

Item

input to (inputs) Function
output from (outputs) Function
transferred by (transfers) Link

Link See Section 1.3 connects to
(connected to)

Component

includes (included in) Link
specified by (specifies) Requirement
transfers
(transferred by)

Item

Requirement
(Type: Performance or

Constraint)

See Sections 1.2 and
1.5

specifies (specified by) Link

System Definition Guide

31

1.17 Derive or Refine Internal Interfaces
Within the system hierarchy, the allocation of Functions to Components establishes the internal interfaces
of the system based on the Items that flow between the allocated Functions. The internal interfaces are
also formalized in the repository using the Link entity class.

As described in Section 1.14, the terminus point for Links must change as lower-level Components are
introduced. Since the Link class is decomposable, one may use, as appropriate, a child Link to connect to
the correct lower-level Components. Thus, using the child connections simplifies the maintenance of the
connections as the interface design proceeds.13 Otherwise, the systems engineer must disconnect and
reconnect the Link to the lower-level component. This allows Links to retain their conceptual identity even
though their child connection end points change as the component hierarchy grows in depth. The
components that provide the Items for the Links are determined by the functional allocation. This also
allows the content of formal higher-level specifications to remain unchanged as the Link connection points
move deeper into the system component hierarchy.

Links may be specified by performance and constraint Requirements. Only the lowest layer of Items
should be transferred by a Link.

Figure 19 Internal Interface Definition

Table 18 Internal Interface Definition

Entity Class Attributes Relations Target Classes
Component See Section 1.1 built from (built in) Component

connected to
(connects to)

Link

Function See Section 1.6 allocated to (performs) Component
decomposed by
(decomposes)

Function

inputs (input to) Item

13 When dealing with Internal Interfaces, the remaining terminus of the Link does change with internal connections.
Therefore, the child Link will terminate with a corresponding child Component.

System Definition Guide

 32

Table 18 Internal Interface Definition

Entity Class Attributes Relations Target Classes
outputs (output from) Item

Item See Section 1.7 decomposed by
(decomposes)

Item

input to (inputs) Function
output from (outputs) Function
transferred by
(transfers)

Link

Link See Section 1.3 connects to
(connected to)

Component

includes (included in) Link
specified by (specifies) Requirement
transfers
(transferred by)

Item

Requirement
(Type: Performance

or Constraint)

See Sections 1.2 and
1.5

specifies (specified by) Link

1.17.1 Ports
Ports provide identification of the place where entities can connect to and interact with a specified
component block. At the upper, abstract levels of an architecture, we generally do not specify the nature of
a port, and the port is simply called a “port”. However, at lower levels of the physical architecture we may
need to refine and specify distinct behavior and requirements for individual connection points to a
configuration item.

Components may have several connection points (or ports) available for interfacing to other components
in the architecture. Ports are places where other components can connect to and interact with a component.
In GENESYS we have the ability to refine the definition of ports and their properties using the definitions of
SysML Version 1.4.

A required interface on a port specifies an operation required by the component to realize its behavior. A
provided interface on a port specifies the operation that the component provides on the interface. Required
and provided interfaces are shown on an internal block diagram using the ball-and-socket notation. The
ball notation indicates a provided interface and the socket notation indicates a required interface This
notation used the provided by/provides and required by/requires relations. A Port that provides a
PortDefinition will be shown on the Flow Internal Block as the ball notation connected to the port; a Port
that requires a PortDefinition will be shown as socket notation connected to the port.

System Definition Guide

33

Figure 20 Port Definitions

Table 19 Port Definitions

Entity Class Attributes Relations Target Classes
Port See Section 1.7 augmented by

(augments)
ExternalFile
Text

categorized by
(categories)

Category

causes (caused by) Risk
documented by
(documents)

Document

generalization of
(kind of)

Port

generates
(generated by)

Nexus

exposes (is port for) Port

impacted by (impacts) Nexus
Risk

is port for (exposes) Component
Port

kind of
(generalization of)

Port

packaged by
(packages)

Package

provides provided by) PortDefinition
requires (required by) PortDefinition
specified by (specifies) Requirement

PortDefinition Description
Operations

augmented by
(augments)

External File
Text

categorized by
(categorizes)

Category

System Definition Guide

 34

Table 19 Port Definitions

Entity Class Attributes Relations Target Classes
documented by
(documents)

Document

packaged by
(packages)

Package

provided by (provides) Port
required by (requires) Port

1.18 Assign/Derive Constraints for Components
Based on the constraint Requirements allocated to a parent Component, constraint Requirements are
derived for the subcomponents. This can be a simple flow-down of the same requirement or may be a
budgeting of a limiting constraint, such as weight, between subcomponents.

Figure 21 Component Constraint Requirements

Table 20 Component Constraint Requirements

Entity Class Attributes Relations Target Classes
Category See Section 1.9 categorizes

(categorized by)
Requirement

(Type: Constraint)
includes (included in) Category

Component
(Type: System)

See Section 1.1 built from (built in) Component
specified by (specifies) Requirement

(Type: Constraint)
Requirement

(Type: Constraint)
See Sections 1.2 and

1.5
categorized by
(categorizes)

Category

refined by (refines) Requirement
(Type: Constraint)

specifies (specified by) Component
(Type: System)

1.19 Capture Physical Architecture Concerns and Risks
While developing the physical architecture and deriving interfaces and performance/constraint
Requirements, additional concerns and risks may be identified. These should be captured in the repository
in a manner analogous to Concerns and Risks resulting from the analysis of originating Requirements
(See Section 1.6 and 1.7).

System Definition Guide

35

Figure 22 Physical Architecture Concern and Risk

Table 21 Physical Architecture Concern or Risk

Entity Class Attributes Relations Target Classes
Component See Section 1.1 causes (caused by) Risk

generates
(generated by)

Concern

Concern See Section 1.6 assigned to
(responsible for)

Organization

documented by
(documents)

Document

generated by
(generates)

Component
Link
Requirement

results in (result of) Function
Requirement

Document See Section 1.2 documents
(documented by)

Concern
Risk

ExternalFile See Section 1.2 augments
(augmented by)

Concern
Risk

Function See Section 1.6 result of (results in) Concern
Link See Section 1.3 causes (caused by) Risk

generates
(generated by)

Concern

Organization See Section 1.6 responsible for
(assigned to)

Concern
Risk

Requirement causes (caused by) Risk

System Definition Guide

 36

Table 21 Physical Architecture Concern or Risk

Entity Class Attributes Relations Target Classes
See Sections 1.2 and

1.5
generates
(generated by)

Concern

refined by (refines) Requirement
refines (refined by) Requirement
result of (results in) Concern

Risk See Section 1.6 assigned to
(responsible for)

Organization

augmented by
(augments)

ExternalFile

caused by (causes) Component
Link
Requirement

documented by
(documents)

Document

System Definition Guide

37

VERIFICATION/VALIDATION

1.20 GENESYS Simulator
The simulator is a discrete event simulator that executes the behavioral and link viewpoints to provide an
assessment of system performance, resource levels, and to verify the dynamic integrity of the conceptual
view. The simulator dynamically interprets a behavior viewpoint (i.e., the Enhanced Functional Flow Block
Diagram [EFFBD] or Activity Diagram [AD]) in conjunction with the Component’s link view. It also identifies
and displays timing, resource utilization, link flow, and viewpoint inconsistencies. The correction of any
inconsistencies usually results in a re-expression of derived Requirements, which in turn affects verification
and validation of the system. The simulator usage should be an integral part of behavioral analysis and
physical architecture synthesis to assure dynamic consistency of the system’s requirements.

1.21 Establish Verification Requirements
For each specified Component, including the system, establish how each leaf-level Function and
Requirement is to be verified. This information is captured in the repository using
VerificationRequirements. VerificationRequirements can range from requirements on acceptance
testing such as a qualification test to verification of individual Requirements and Functions. A single
VerificationRequirement may verify multiple leaf-level Requirements and Functions.

Figure 23 Verification Requirements

Table 22 Verification Requirements

Entity Class Attributes Relations Target Classes
Function See Section 1.6 verified by (verifies) VerificationRequirement
Requirement See Sections 1.2 and

1.5
verified by (verifies) VerificationRequirement

VerificationRequirement See Section 1.8 verifies (verified by) Function
Requirement

1.22 Establish Verification Events
Actual verification activities are summarized in the repository as VerificationEvents. TestActivities
represent the test steps and expected results used by a particular VerificationEvent. TestConfigurations
identify the equipment and facilities needed for particularTestActivities. A TestConfiguration identifies
Components of the system and Links to the Components under test, support Components, as well as
test equipment and test support software. As TestActivities are planned and conducted, the
VerificationRequirement's Status attribute is updated in the repository.

System Definition Guide

 38

Figure 24 Verification Planning

Table 23 Verification Planning

Entity Class Attributes Relations Target Classes
Component See Section 1.1 forms (formed by) TestConfiguration
Document See Section 1.2 documents

(documented by)
TestActivity
TestConfiguration
VerificationEvent

ExternalFile See Section 1.2 augments
 (augmented by)

TestConfiguration
VerificationEvent

Link See Section 1.3 forms (formed by) TestConfiguration
Organization See Section 1.6 responsible for

(assigned to)
TestActivity

TestConfiguration Description
Number

documented by
(documents)

Document

employed by
(employs)

TestActivity

formed by (forms) Component
Link

TestActivity See Section 1.8 accomplishes
(accomplished by)

Verification Event

assigned to
(responsible for)

Organization

based on (basis of) VerificationRequirement
decomposed by
(decomposes)

TestActivity

documented by
(documents)

Document

employs
(employed by)

TestConfiguration

specified by
(specifies)

VerificationRequirement

System Definition Guide

39

Table 23 Verification Planning

Entity Class Attributes Relations Target Classes
VerificationEvent Description

Duration
Duration Units
End Date
Labor Hours
Non-Recurring

Cost
Number
Start Date
Title
Type

accomplished by
(accomplishes)

TestActivity

augmented by
(augments)

ExternalFile

documented by
(documents)

Document

includes
(included in)

VerificationEvent

VerificationRequirement See Section 1.8 basis of (based on) TestActivity
specifies (specified
by)

TestActivity

1.23 Test Planning
Test support and planning are captured in the GENESYS repository using the TestActivity and TestItem
classes. These classes are analogous to the Function and Item classes. From a behavioral perspective,
there is no difference among these classes. There are some attribute and relational differences, however.
Overall and individual test planning in GENESYS begins with defining major test threads for the system
and culminates in an integrated behavior view of the test activities for the system, subsystem, etc. For the
program or project, a top-level TestActivity should be defined and associated with a VerificationEvent
using the accomplishes (accomplished by) relation pair. The TestActivity attribute behaviorType should
be set to “Integrated (Root)” in order to identify that this top-level TestActivity represents the totality of
testing needed to satisfy the test objectives of the program/system represented by the associated
VerificationEvent. The root TestActivity may be decomposed (hierarchically) into all of the activities
needed to satisfactorily define the test plan for the program/system. A TestItem is an input to or an output
from a TestActivity. TestItems are the control indicators or measurables associated with a TestActivity,
i.e., test data. A TestActivity is established by a Requirement.

Figure 25 Test Planning

System Definition Guide

 40

Table 24 Test Planning

Entity Class Attributes Relations Target Classes
Document See Section 1.2 documents

(documented by)
TestActivity

ExternalFile See Section 1.2 augments
(augmented by)

TestActivity
TestItem

TestActivity See Section 1.8
and Table 23
Verification Planning

accomplishes
(accomplished by)

VerificationEvent

augmented by
(augments)

ExternalFile

decomposed by
(decomposes)

TestActivity

elaborates
(elaborates by)

UseCase

established by
(establishes)

Requirement

inputs (input to) TestItem

outputs (output from) TestItem
TestItem See Section 1.8 augmented by

(augments)
ExternalFile

decomposed by
(decomposes)

TestItem

input to (inputs) TestActivity

output from (outputs) TestActivity
Requirement See Sections 1.2

and 1.5
establishes
(established by)

TestActivity

CHANGE MANAGEMENT SUPPORT
The GENESYS repository provides Change Management Support through the use of the
ChangeRequestPackage class. The ChangeRequestPackage class allows the capture of system design
changes and their impacts upon the model held in the GENESYS repository. A ChangeRequestPackage
entity contains the basic characterization of the change proposal, which will be submitted to the system’s
change approval agent and may be augmented by one or more ExternalFile entities. The need for a formal
change request occurs whenever there is a change to the source requirements or other changes affecting
the system’s baseline.14 These system changes may arise from internal and external organizations.
Capturing the source of the change proposal is through the originated by (originates) relationship pair
associating the Organization entity with the proposed ChangeRequestPackage entity. Also, the
ChangeRequestPackage entity is assigned to one or more organizational entities for review. One or more
of the Component, Function, Link, Organization, Requirement, Resource, UseCase, or
VerificationRequirement classes may generate the ChangeRequestPackage entity. As an outcome of
the analysis and review by the various Organizations, the impacts upon the system design will be

14 A system design baseline is defined as a completed layer of the STRATA process, which has been placed under
configuration control. The baseline of interest in this discussion is the baseline, which is the immediate predecessor to
the current working layer.

System Definition Guide

41

established and the benefits and deficiencies of the proposed change are uncovered and presented to the
system’s change approval agent.

Once the proposed changes are approved, the system’s current baseline is updated and resaved to serve
as the program or project’s current system baseline. The resulting saved change file (captures the set of
approved changes in the model) is used to propagate the changes to the current working layer of the design
repository.15 This allows the design team to proceed with the design, while minimizing the effects of the
changes on the current layer’s design.

Figure 26 Change Management Support

Table 25 Change Management Support

Entity Class Attributes Relations Target Classes
ChangeRequestPackage See Section 1.7 assigned to

(responsible for)
Organization

augmented by
(augments)

ExternalFile

documented by
(documents)

Document

15 A properly executed system design process will only have changes affecting the current baseline (the current
completed STRATA layer). If the change must go back to an even earlier baseline, it points to a flawed system design
process and increases the likelihood of not having the design process converge to a realizable system, much less one
within cost and schedule limits.

System Definition Guide

 42

Table 25 Change Management Support

Entity Class Attributes Relations Target Classes
generated by
(generates)

Component
Document
Function
Link
Organization
Requirement
Resource
State
UseCase
VerificationRequirement

impacts
(impacted by)

Component
Document
Function
Item
Link
Mode
Organization
Product
ProgramActivity
ProgramElement
Requirement
Resource
State
TestActivity
TestConfiguration
TestItem
UseCase
VerificationEvent
VerificationRequirement

originated by
(originates)

Organization

results in
(result of)

Function
Requirement

Component See Section 1.1 generates
(generated by)

ChangeRequestPackage

impacted by
(impacts)

ChangeRequestPackage

Document See Section 1.2 generates
(generated by)

ChangeRequestPackage

impacted by
(impacts)

ChangeRequestPackage

ExternalFile See Section 1.2 augments
(augmented by)

ChangeRequestPackage

System Definition Guide

43

Table 25 Change Management Support

Entity Class Attributes Relations Target Classes
Function See Section 1.1 generates

(generated by)
ChangeRequestPackage

impacted by
(impacts)

ChangeRequestPackage

result of
(results in)

ChangeRequestPackage

Item See Section 1.7 impacted by
(impacts)

ChangeRequestPackage

Link See Section 1.3 generates
(generated by)

ChangeRequestPackage

impacted by
(impacts)

ChangeRequestPackage

Organization See Section 1.6 generates
(generated by)

ChangeRequestPackage

impacted by
(impacts)

ChangeRequestPackage

originates
(originated by)

ChangeRequestPackage

responsible for
(assigned to)

ChangeRequestPackage

Requirement See Sections 1.2 and
1.5

generates
(generated by)

ChangeRequestPackage

impacted by
(impacts)

ChangeRequestPackage

result of
(results in)

ChangeRequestPackage

State See Section 1.10 generates
(generated by)

ChangeRequestPackage

impacted by
(impacts)

ChangeRequestPackage

TestActivity See Section 1.8 impacted by
(impacts)

ChangeRequestPackage

TestItem See Section 1.8 impacted by
(impacts)

ChangeRequestPackage

Requirement See Sections 1.2 and
1.5

generates
(generated by)

ChangeRequestPackage

impacted by
(impacts)

ChangeRequestPackage

results of
(results in)

ChangeRequestPackage

VerificationRequirement See Section 1.8 generates
(generated by)

ChangeRequestPackage

impacted by
(impacts)

ChangeRequestPackage

2270 Kraft Drive, Suite 1600
Blacksburg, Virginia 24060

540.951.3322 | FAX: 540.951.8222
Customer Support: support@vitechcorp.com

www.vitechcorp.com

mailto:support@vitechcorp.com
https://www.vitechcorp.com/

	Preface
	Introduction
	Requirements Capture
	1.1 Define Need and System Concept
	1.2 Capture Source (Originating) Requirements
	1.3 Define System Boundary
	1.4 Collect Additional Applicable Documents

	Requirements Analysis
	1.5 Parse Originating Requirements
	1.6 Identify Requirement Concerns and Risks
	1.6.1 Informal Comments using the Note Class

	1.7 Risk Management
	1.7.1 Typing Risks
	1.7.2 Risk Process
	1.7.2.1 Risk Identification
	1.7.2.2 Risk Analysis
	1.7.2.3 Risk Handling Planning
	1.7.2.4 Risk Tracking

	1.8 Generate Mitigation Activities
	1.9 Characterize Requirements and Categorize Constraints

	Behavioral Analysis
	1.10 Identify States (If Needed)
	1.11 Use Cases (If Needed)
	1.12 Develop the System Behavioral Hierarchy
	1.13 Refine and Allocate Functional Performance Requirements
	1.14 Capture Behavioral and Performance Concerns and Risks

	Physical Architecture Synthesis
	1.15 Allocate Functions to Next Level of Components
	1.16 Refine External Interface Definitions
	1.17 Derive or Refine Internal Interfaces
	1.17.1 Ports

	1.18 Assign/Derive Constraints for Components
	1.19 Capture Physical Architecture Concerns and Risks

	Verification/Validation
	1.20 GENESYS Simulator
	1.21 Establish Verification Requirements
	1.22 Establish Verification Events
	1.23 Test Planning

	Change Management Support

