

Architecture
Definition
Guide

CORE Architecture Definition Guide (DoDAF v2.02)

ii

Copyright © 1998-2015 Vitech Corporation. All rights reserved.

No part of this document may be reproduced in any form, including, but not limited to, photocopying,
translating into another language, or storage in a data retrieval system, without prior written consent of
Vitech Corporation.

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)
(1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.277-7013.

Vitech Corporation
2270 Kraft Drive, Suite 1600
Blacksburg, Virginia 24060

540.951.3322 FAX: 540.951.8222
Customer Support: support@vitechcorp.com

www.vitechcorp.com

is a trademark of Vitech Corporation and refers to all products in the CORE software
product family.

Other product names mentioned herein are used for identification purposes only, and may be trademarks
of their respective companies.

Publication Date: June 2015

https://connect.vitechcorp.com/lib/doc/Submissions/support@vitechcorp.com
https://connect.vitechcorp.com/lib/doc/Submissions/www.vitechcorp.com

CORE Architecture Definition Guide (DoDAF v2.02)

iii

TABLE OF CONTENTS
1. Preface ... 1

2. Architecture Concepts .. 3

2.1 Operational and System Architecture Domain Relationships.. 4

3. Operational Concept Capture ... 5

3.1 Define Architecture .. 5

3.2 Capture Source Material .. 6

3.3 Identify Organizations .. 10

3.4 Define Operational Boundary .. 12

3.5 Classification .. 13

4. Operational Activity Analysis .. 13

4.1 Operational Activity View ... 14

4.2 State View .. 17

5. Operational Architecture Synthesis .. 20

5.1 Assign OperationalActivities to Next Level of Performers ... 20

5.2 Refine External Needline Definitions ... 21

5.3 Derive or Refine Internal Needlines ... 23

6. Operational Viewpoint Validation Using COREsim .. 24

7. Operational Architecture Considerations ... 24

7.1 Performance Requirements ... 24

7.2 Services Development ... 25

7.3 Requirements Development .. 26

7.4 Traceability from Operational Architecture .. 27

8. Program Management Aspects .. 29

8.1 Program/Project Basics ... 29

8.2 Program Management Activity View .. 31

9. Documentation—DoDAF v2.02 Viewpoints ... 33

CORE Architecture Definition Guide (DoDAF v2.02)

iv

LIST OF FIGURES
Figure 1 MBSE Activities ... 2
Figure 2 CORE's DoDAF v2.02 Schema - Part 1 ... 3
Figure 3 CORE's DoDAF v2.02 Schema - Part 2 ... 4
Figure 4 Architecture Definition ... 5
Figure 5 Source Material ... 7
Figure 6 Organizations .. 10
Figure 7 Operational Boundary ... 12
Figure 8 Classification ... 13
Figure 9 Operational Activity View .. 15
Figure 10 State View ... 18
Figure 11 Performer Hierarchy and OperationalActivity Assignment ... 20
Figure 12 External Needline Definition ... 21
Figure 13 Internal Needline Definitions ... 23
Figure 14 Performance Requirements .. 24
Figure 15 Services .. 25
Figure 16 Requirements Development ... 27
Figure 17 Operational to Systems Traceability ... 28
Figure 18 Program Management Basics .. 30
Figure 19 Program Activity View ... 32

 LIST OF TABLES

Table 1 Architecture Definition .. 5
Table 2 Source Material .. 7
Table 3 Organizations ... 11
Table 4 Operational Boundary .. 12
Table 5 Classification .. 13
Table 6 Operational Activity View ... 15
Table 7 State View .. 18
Table 8 Performer Hierarchy and OperationalActivity Assignment .. 21
Table 9 External Needline Definition ... 22
Table 10 Internal Needline Definitions .. 23
Table 11 Performance Requirements ... 25
Table 12 Services ... 25
Table 13 Requirements Development .. 27
Table 14 Operational to Systems Traceability .. 28
Table 15 Program Management Basics .. 30
Table 16 Program Activity View .. 32
Table 17 DoDAF v2.02 Viewpoint Scripts ... 33

CORE Architecture Definition Guide (DoDAF v2.02)

v

CUSTOMER RESOURCE OPTIONS

Supporting users throughout their entire journey of learning MBSE is central to Vitech’s mission. For users
looking for additional resources outside of this document, please refer to the links below. Alternatively, all
links may be found at www.vitechcorp.com/resources.

Webinars

Webinar archive with over 40
hours of premium industry and
tool-specific content.

Screencasts

Short videos to guide users
through installation and usage of

Vitech software.

A Primer for Model-Based
Systems Engineering

Our free eBook and our most
popular resource for new and
experienced practitioners alike.

Help Files

Searchable online access to
Vitech software help files.

Technical Papers

Library of technical and white
papers for download, authored
by Vitech systems engineers.

MySupport

Knowledge Base, Exclusive
Webinars and Screencasts, Chat
Support, Documents, Download
Archive, etc.

Our team has also created resources libraries customized for your experience level:

All Resources Advanced

Beginner IT / Sys Admin

Intermediate Student

http://www.vitechcorp.com/resources/video_archive.php
http://www.vitechcorp.com/resources/screencasts.php
http://www.vitechcorp.com/resources/mbse.shtml
http://www.vitechcorp.com/resources/mbse.shtml
http://www.vitechcorp.com/resources/core/onlinehelp/desktop/Welcome.htm
http://www.vitechcorp.com/resources/technical_papers.php
http://www.vitechcorp.com/MySupport/support/Login.aspx?ReturnUrl=%2fMySupport%2fsupport%2fdefault.aspx
http://www.vitechcorp.com/resources/index.shtml
http://www.vitechcorp.com/resources/advanced.shtml
http://www.vitechcorp.com/resources/beginner.shtml
http://www.vitechcorp.com/resources/it_sysadmin.shtml
http://www.vitechcorp.com/resources/intermediate.shtml
http://www.vitechcorp.com/resources/student.shtml

CORE Architecture Definition Guide (DoDAF v2.02)

vi

THIS PAGE INTENTIONALLY BLANK

CORE Architecture Definition Guide (DoDAF v2.02)

1

1. PREFACE

This Architecture Definition Guide (ADG) provides a structured approach for populating a CORE™ project
with architectural definition information using the Department of Defense Architecture Framework (DoDAF)
schema provided with CORE. For detailed information about DoDAF, refer to the Department of Defense
Architecture Framework Version 2.02, 28 May 2010 (Volume 1, Volume 2, and Volume 3). This guide is
written as a supplement to the CORE System Definition Guide (SDG).

A DoDAF architecture contains operational elements, system elements, and program management
elements; therefore, enterprise and operational development must consider these three areas.1 This ADG
presents the activities required to capture and develop an operational architecture. Operational viewpoints
are developed using model-based systems engineering (MBSE) principles, which apply equally well to
architecture development, and the engineering activities. Integration of the operational viewpoints and the
system viewpoints occur through the MBSE model as captured in the CORE repository. These architectural
developmental activities may be expressed in terms of systems engineering domain activities without loss
of specificity or generality. The systems engineering domain activities consist of operations/requirements
analysis, functional analysis, physical architecture synthesis, and design verification and validation. An
overview of the MBSE process is portrayed below for reference. At all stages of architectural development,
CORE can produce documentation for the purpose of presentation, review, and analysis of the architecture
as well as integrate and compare other architectures. The DoDAF v2.02 viewpoints become available as a
consequence of applying MBSE to a specific operational architecture.

This guide describes each architectural development activity and the CORE DoDAF v20 schema classes
used to capture the associated information along with a schema diagram and table, identifying the schema
classes used when performing this activity. Following the engineering activity discussion, the associated
attributes and relationships are also presented. In addressing each activity, attention is given to populating
the repository in a manner that facilitates the production of DoDAF v2.02 viewpoints2 using the standard
scripts provided with CORE.

CORE’s Model Assistant, when enabled, offers autogeneration of some class elements, their key
relationships, and where used, attributes on those relationships. One aspect introduced with CORE 9 is
pre-populating the repository with elements when the project is created. For example, when a project is
created, Model Assistant, when enabled, creates a System Context element in the Component class along
with a root Function (_Perform System Context Functions) and a root State (_Exhibit System Context
States). An additional autogenerated element within the DoDAF schema is “_Architecture Context” in the
Performer class.

This guide augments the SDG and the MBSE with CORE training course. The approach used here is
generic and is not exhaustive of all cases and situations. This approach is written in the context of
developing an operational definition before addressing the system definition. The programmatic aspects
will also vary depending upon the state of the architecture, whether multiple architectures are being
managed, etc. When working with “as-is” architectures, the activities may be reordered to best capture the
existing as-is architecture.

1 Enterprise architectures follow these same principles; however, enterprise architectures are not specifically addressed
in this architecture definition guide.
2 DoDAF v1.0/v1.5 views are also available for use with legacy architectural models and current models being
developed under these previous versions of the DoDAF. Conversion of these models to DoDAF 2.02 models is possible.

CORE Architecture Definition Guide (DoDAF v2.02)

2

Figure 1 MBSE Activities

The following additional resources are available for use with this guide:

 For descriptions of different behavior diagram notation, and the mechanics of entering data into
CORE, the reader is referred to CORE’s help documentation.

 For the definition of schema terms, the reader is referred to the CORE DoDAF v20 schema, which
contains descriptions for each schema entity, and to the Schema Definition Report script that
outputs complete documentation of the schema definition for a selected facility including
descriptions for each schema entity.

 For details on generating DoDAF v2.02 viewpoints, the reader is referred to the script help file
provided for each DoDAF v2.02 script. The user may access this documentation by selecting the
Run Script icon on the CORE toolbar, selecting the DoDAF v20 folder, selecting any one of the
DoDAF v2.02 scripts such as the (AV-1) Overview and Summary Information script, and clicking
the Script Help File button. Note that CORE continues to support the DoDAF views developed
to support DoDAF v1.0/v1.5. These report scripts reside in the DoDAF scripts folder.

CORE Architecture Definition Guide (DoDAF v2.02)

3

2. ARCHITECTURE CONCEPTS

As portrayed in Figure 2 CORE’s DoDAF v2.02 Schema – Part 1, CORE separates architecture into an
Operational Architecture Domain and a System Architecture Domain. The Operational Architecture Domain
captures originating concepts, capabilities, and through supporting operational analysis, exposes
requirements leading to, and implemented in, the System Architecture Domain.

DoDAF 2.02 Schema – Part 1

implemented by

implemented by

achieves

Architecture
composed ofcomposed of

Operational
Architecture

Domain

transfers

decomposed by

decomposed by

exits by

inputs / outputs /
triggered by

captures /
consumes /

produces

performs

connected to

achieves

built from

System
Architecture

Domain

Interface

transfers

decomposed by

decomposed by

inputs / outputs /
triggered by

captures /
consumes /
produces

performs

connected to

Exit

Resource

implemented by

implemented by built from

exits by

comprised of

responsible for

Selected Classes

Organization
includes

achieves

Operational
Task

includes

Mission
includes

joined to

Interface
Element

Requirement
Element

Physical
Element

Functional
Element

Color Code

Service
Specification

documented by

refined by

Selected
Classes

basis of specifies

refined by

Capability

basis of

implemented by

Function
Operational

Activity

Transition

responsible forresponsible for

Mode

encompasses

contains

entered byexits by

decomposed

by

exhibits

triggered by

incorporates incorporates

Link

exhibits

contains

Item

includes
includes

Operational
Item

Performer

Requirement

Component

State

Needline

Event

Selected
Classes

specifies

Figure 2 CORE's DoDAF v2.02 Schema - Part 1

As portrayed in Figure 3, CORE’s DoDAF v2.02 Schema – Part 2, CORE integrates the Program
Management Domain with both the Operational Architecture Domain and the System Architecture Domain.
The Program Management Domain addresses the programmatic aspects of the architecture/system to
assist in managing the current effort as well as finding commonality, duplicative, and missing capabilities
among architectures. These aspects help an executive/manager address duplication, misappropriation of
scarce resources, and the timeliness of the delivered capabilities to the enterprise.

CORE Architecture Definition Guide (DoDAF v2.02)

4

Figure 3 CORE's DoDAF v2.02 Schema - Part 2

This ADG (DoDAF v2.02) provides guidance into structuring the elements, attributes and relationships that
implement the Operational Architecture Domain and Program Management Domain for a project. Similarly,
the SDG provides guidance into structuring the elements, attributes and relationships that implement the
System Architecture Domain.

2.1 Operational and System Architecture Domain Relationships

The Operational Architecture Domain provides the necessary classes, attributes, and relationships to
capture the foundational concepts, guidance, and the subsequent operational analyses to support defining
the interrelationships among architectures and systems along with documenting the source requirements
for a system (or systems) of interest. The architecture element which spans the two domains is specified in
Section 3.1 Define Architecture and is composed of Performer (of type: Operational Architecture) and
Component (of type: Family of Systems, Systems Architecture, or System of Systems) element(s).

Within the Operational Architecture Domain, the Performer (type: Operational Architecture) is part of the
operational context which also includes the Performer element(s) that represent the external aspects of
the operational domain. See Section 3.4 Define Operational Boundary for details on defining the operational
boundary.

Similarly, the System Architecture Domain includes the Component element (of type: Family of Systems,
Systems Architecture, or System of Systems) which represents the system(s) of interest. This element
forms part of the system context, which includes the Component element(s) representing the external
aspects of the system domain. See CORE System Definition Guide, Section 1.3, Define System Boundary
for details on defining the system boundary.

CORE Architecture Definition Guide (DoDAF v2.02)

5

3. OPERATIONAL CONCEPT CAPTURE

This section is written assuming that the customer or end-user has provided a Concept of Operations
(CONOPS) or an operational capabilities or operational requirements document. If that is not the case, it is
then assumed that the system/architectural engineering team will start with the task of collecting all
stakeholder needs and transforming them into the required operational information. The end result of this
effort will be a collection of architecture capabilities or requirements that are treated as originating
operational requirements and/or architectural guidance information (See Section 3.2 Capture Source
Material).

3.1 Define Architecture

Identify the architecture. Architectures exist for the purpose of achieving a well-defined system or more
broadly for the enterprise, an integrated set of systems of systems (as defined in both the operational and
system domains) for a specific time frame or time frames. The Architecture class is used to identify an
architecture and its time frame. Each architecture is composed of an operational architecture and a systems
architecture. Performers (operational nodes in DoDAF v1.5) in the operational architecture are represented
in CORE using the Performer class. Physical entities, including collections of systems, interfacing systems,
and entities within the systems architecture, are represented in CORE using the Component class. A
Performer’s or Component’s Type attribute designates what the element represents (in this case an
operational architecture for a Performer and systems architecture, system of systems, or family of systems
for a Component). The Type attribute may indicate the role of the element or its relative position within the
performer hierarchy.

Figure 4 Architecture Definition3

Table 1 Architecture Definition

Element Class Attributes Relationships Target Classes

Architecture Description

Number

composed of / composes Component

Performer

3 The relationships presented in this figure and the following are not exhaustive but seek to show the primary

relationships for the topical area.

CORE Architecture Definition Guide (DoDAF v2.02)

6

Table 1 Architecture Definition

Element Class Attributes Relationships Target Classes

Purpose

Scope

Time Frame4

achieves / achieved by Mission

Component

 (Type = Family of
Systems, Systems
Architecture, System
of Systems)

See SDG

Type: Family of
Systems, Systems
Architecture, or
System of Systems

composes / composed of Architecture

Mission Description

Number

achieved by / achieves Architecture

Performer

 (Type = Operational
Architecture)

Abbreviation

Cost

Description

Doc. PUID

Latitude

Location5

Longitude

Number

Operations

Purpose

Receptions

Values

Type: Operational
Architecture

composes / composed of Architecture

3.2 Capture Source Material

Capturing source material involves the creation of the following entries in the repository depending on the
information provided or needed:

 Capability element for each source capability statement6

 Document element for each source document

 Mission element for each pertinent mission area or description

 OperationalTask element for each operational task from a source such as the Universal Joint Task
List (UJTL) or the Mission Essential Task List (METL)7

 Requirement element for each source requirement8

 ExternalFile element for each source guidance, requirement, mission, or operational task-related
table or graphic

 DefinedTerm element for each pertinent acronym or special term in the source documents
As part of the process of capturing source material, the following should be done:

 Place any tables and graphics in separate files and reference them in the project repository using

4 It is recommended that the Architecture for each distinct time frame be captured in separate CORE Projects.
5 The Location attribute provides a means of specifying physical and logical locations (addresses) in conjunction with

physical latitude and longitude or independent of latitude and longitude.
6 A Capability Requirement is distinguished from a Capability and is placed in the Requirement class with the Type
attribute set to Capability.
7 The OperationalTask class is only used in those instances where traceability from a source such as the UJTL or

METL is required. These tasks are specified, not derived.
8 Examples are architecture and operational constraints, task performance characterization, and guidance derived.

CORE Architecture Definition Guide (DoDAF v2.02)

7

ExternalFile elements where each augments the subject element. The formal documentation
scripts, as well as the System Description Document (SDD) script, will automatically include
these external tables and graphics in the output immediately following the element Description
and make entries in the List of Figures and List of Tables, as appropriate. In order to properly
number and label the tables and graphics for inclusion in the output, only a single graphic or
table should appear in each ExternalFile.

 Acronyms and/or special terms appearing in the source document should be captured in the
repository as DefinedTerms. For an acronym or abbreviation, the acronym is entered into the
Acronym attribute and what it stands for is entered as the name of the element. For a special
term, the term is the name of the element and its definition is entered into the Description
attribute. By filling in both the Acronym and Description attributes, appropriate entries will appear
in both the acronym and glossary sections of the SDD.

Extracting elements from source documents. The entry of source elements into a CORE repository
may be accomplished by using one or more of the following:

 Document Parser

 Element Extractor

 DOORS Connector tool if the elements are being transferred from IBM® Rational® DOORS®

 CSV Parser script if the elements are being transferred as a CSV file from another application such
as Microsoft® Excel® or Microsoft Access®

 Copy and Paste or Paste Unformatted commands

Figure 5 Source Material

Table 2 Source Material

Element Class Attributes Relationships Target Classes

Architecture See Section 3.1 achieves / achieved by Mission

assigned to /
responsible for

Organization

augmented by /
augments

ExternalFile

composed of /
composes

Component

Performer

documented by /
documents

Document

implemented by /
implements

ProgramElement

CORE Architecture Definition Guide (DoDAF v2.02)

8

Table 2 Source Material

Element Class Attributes Relationships Target Classes

specified by / specifies Capability

Requirement

Capability Benefit

Description

Doc. PUID

Key Performance
Parameter

Origin

Paragraph Number

Paragraph Title

Rationale

augmented by /
augments

ExternalFile

basis of / based on OperationalActivity

documented by /
documents

Document

implemented by /
implements

Requirement

refined by / refines Capability

specified by / Requirement

specifies / specified by Architecture
Interface
Needline
OperationalItem
Performer
State

supplied by / supplies ProgramElement

DefinedTerm Acronym

Description

used in / uses Document

Document CDRL Number

Description

Document Date

Document Number

Govt. Category

Non-Govt. Category

External File Path

Number

Revision Number

Type

documents /
documented by9

Architecture

Capability

Mission

Needline

OperationalActivity

OperationalItem

OperationalTask

Performer

Requirement

State

uses / used in DefinedTerm

9 Only the top-level Mission, OperationalTask, and Requirement elements need to be documented by the source
Document.

CORE Architecture Definition Guide (DoDAF v2.02)

9

Table 2 Source Material

Element Class Attributes Relationships Target Classes

ExternalFile Description

External File Path

Number

Page Orientation

Title

Type

augments /
augmented by10

Architecture

Capability

Event

Mission

Mode

Needline

OperationalActivity

OperationalItem

OperationalTask

Performer

Requirement

State

Transition

UseCase

Mission See Section 3.1 achieved by / achieves Architecture

OperationalActivity

OperationalTask

assigned to /
responsible for

Organization

augmented by /
augments

ExternalFile

documented by /
documents

Document

included in / includes Mission

OperationalTask Description

Number

achieves / achieved by Mission

augmented by /
augments

ExternalFile

documented by /
documents

Document

included in / includes OperationalTask

Requirement Description

Doc. PUID

Key Performance
Parameter

augmented by /
augments

ExternalFile

documented by /
documents

Document

10 The Position attribute of this relationship should be set to control the order in which multiple external files are

appended to the element's Description attribute when it is output in the ADD.

CORE Architecture Definition Guide (DoDAF v2.02)

10

Table 2 Source Material

Element Class Attributes Relationships Target Classes

Incentive Performance
Parameter11

Number

Origin: Operational

Paragraph Number

Paragraph Title

Rationale

Units

Value

Weight Factor

refined by / refines Requirement

Warning: The default font for text attributes, such as Description, is Times New Roman 10. Within a text
attribute, the user has control over color, fonts, styling, sizing, and special effects such as underline,
superscript, and strikethrough. The documentation scripts do not override any user modified fonts or special
effects; however, they can override color, styling, and font size if the font is Times New Roman (they only
control the styling of text in Times New Roman). Consequently, in order to produce professional-looking
documents, care should be taken when capturing external source material. Specifically, when using the
Element Extractor tool, either turn off the Maintain Formatting option or pre-process the document to convert
all text to Times New Roman (i.e., open the document in a word processor, select all contents of the
document, and select Times New Roman as the font). Similarly, when using cut & paste, either pre-process
the document to set the font to Times New Roman or use Paste Unformatted rather than the Paste
command. Since they should not be modified on output, formulas should be captured in another font, such
as Arial. Also, note that text attributes do not support embedded tables and graphics. Therefore, tables and
graphics should be captured as ExternalFile elements.

3.3 Identify Organizations

Based on the source documents, identify the organizations that are key players in the architecture using
elements in the Organization class. Capture the command structure as well as the coordination
relationships among these organizations.

Figure 6 Organizations

11 This parameter identifies the performance requirement or other requirement incentivized on a particular contract.

CORE Architecture Definition Guide (DoDAF v2.02)

11

Table 3 Organizations

Element Class Attributes Relationships Target Classes

Architecture See Section 3.1 assigned to /
responsible for

Organization

Mission See Section 3.1 assigned to /
responsible for

Organization

OperationalActivity BeginLogic

Description

Doc. PUID

Duration

EndLogic

ExitLogic

Number

Timeout

Title

assigned to /
responsible for

Organization

Organization Abbreviation

Description

Latitude

Location

Longitude

Number

Role

coordinated with /
coordinates with

Organization

included in / includes Organization

responsible for /
assigned to

Architecture

OperationalActivity

Mission

ProgramActivity

ProgramElement

Risk

ProgramActivity Description

Begin Logic

Duration

End Date

End Logic

Exit Logic

Number

Start Date

Timeout

assigned to /
responsible for

Organization

ProgramElement Contract Number

Cost

Description

End Date

Labor Hours

Non-recurring Cost

Start Date

Type

assigned to /
responsible for

Organization

Risk See SDG assigned to /
responsible for

Organization

CORE Architecture Definition Guide (DoDAF v2.02)

12

3.4 Define Operational Boundary

Based on an examination of the source, identify the operational boundary and context. To define the
boundary, identify each operational external with which the architecture must interface. An operational
external is represented as a Performer and may identify the operational environment. Create a Performer
element representing the context and decompose it into the operational architecture and its externals using
the built from relation. Set the Type attribute for each Performer.

To complete the operational boundary definition, identify all the exchanges between the architecture’s
performers and each external by creating elements of the Needline class. Defining a Needline element
establishes that the architecture interacts with an external. Typically, there will be only one Needline
between the architecture’s performers and each external performer.

Figure 7 Operational Boundary

Table 4 Operational Boundary

Element Class Attributes Relationships Target Classes

Performer

(Type: Context)

See Section 3.1 built from / built in Performer

(Type: Operational
Architecture and
External)

Performer

(Type: External)

See Section 3.1 built in / built from Performer

connected to /
connects to

Needline

Performer

(Type: Operational
Architecture)

See Section 3.1 built in / built from Performer

(Type: Context)

connected to /
connects to

Needline

Needline Description

Doc. PUID

Number

connects to / connected
to

Component

(Type: External and
Operational
Architecture)

Suggestion: Create a folder for the context and externals in order to separate them from the evolving
performer hierarchy. Typically, the context and externals are given a different numbering scheme than the
elements in the performer hierarchy in order to differentiate them in CORE views such as the Physical Block

CORE Architecture Definition Guide (DoDAF v2.02)

13

Diagram and Hierarchy diagrams.

3.5 Classification

Some architectures must address the classification of objects. The Classification class serves to
associated classification level and other characteristics, such as Dissemination Control with, potentially, all
elements in the repository.

Figure 8 Classification

Table 5 Classification

Element Class Attributes Relationships Target Classes

Classification

Description

Number

Classification Category

Dissemination Control

Releasability

Security Level

Short Label

classifies / classified by DefinedTerm

Document

ExternalFile

SupplementedElement

Text

DefinedTerm See Section 3.2 classified by / classifies Classification

Document See Section 3.2 classified by / classifies Classification

ExternalFile See Section 3.2 classified by / classifies Classification

Text Description classified by / classifies Classification

4. OPERATIONAL ACTIVITY ANALYSIS

Given the need to satisfy an operational mission(s) within the context of a CONOPS and/or an operational
requirements document, the systems engineering/architecture team must derive the operational
architecture’s necessary operational behavior to accomplish the mission or missions. This is essentially a
discovery process, working with operational activities to derive, define, or capture key capabilities. Finalized
capabilities are integrated to become the integrated behavioral view for the architecture.

CORE Architecture Definition Guide (DoDAF v2.02)

14

4.1 Operational Activity View

Capabilities12 form the foundation of an operational architecture. A capability is defined as: The ability to
achieve a Desired Effect under specified [performance] standards and conditions through combinations of
ways and means [activities and resources] to perform a set of activities.

The above definition self-interprets “ways and means” as “activities and resources.” In MBSE, “ways” are
behaviorally interpreted, i.e., Functions, OpererationalActivities, etc. “Resources” have a two-fold
interpretation. The DoDAF literature predominately sees “resources” as inputs and outputs of Functions
and OperationalActivities. Hence, “resources” are seen primarily as Items and OperationalItems.

Another usage of “resource” sees it as a necessary object for a behavioral entity to execute, as expected,
in a dynamic environment. To illustrate this concept consider a maintenance action, where the function is
to transform an inoperative component into a properly functioning component. The functional transform is
“repair,” where the input is a non-functioning component and the output is a functioning component. An
input would obviously be a non-functioning component and an output would obviously be a functioning
component. However, notice this “repair” function needs a set of spare parts and other material or non-
material to enable the repair function to happen. Lack of spare components causes the repair function to
lengthen in its execution.

The language of DoDAF tends to treat these spare components also as Items and OperationalItems;
however, treating spare components, in this sense, also modifies the functional transform. It introduces the
functionality to acquire, manage, and use these spare components, which now introduces a distraction at
best, or complexity in representing behavior. A logical equivocation occurs, unless the function definition
explicitly changes. The “repair” function must conceptually become “repair, acquire, manage, and use spare
components.” The function becomes more complex and distracts from understanding and representing
what the core functionality of the component is—it tends to make behavioral views harder to develop. To
counter this tendency, MBSE offers the concept of a Resource—a resource in a different sense than used
in the DoDAF literature. Here a Resource may be used to affect execution behavior to better understand
the effects of resource limitations on the overall system performance.

Capabilities,13 in general, are the starting point for defining operational scenarios. These scenarios consist
of a sequence of OperationalActivities needed to satisfy the Capability. Each scenario of an
OperationalActivity sequence begins with an external stimulus and each scenario ends with the provision
of an external stimulus.14 These scenarios consist of a sequence of operational activities needed to respond
to an external stimulus or to provide an external stimulus. Capabilities are the basis of
OperationalActivities and are executable behavior entities. Each OperationalActivity is allocated to an
element in the Performer class and the relationship attribute Behavior Type is set to “Capability.” The
integrated operational behavior is developed from integrating two or more capabilities, expressed as a
sequence of OperationalActivities into a single behavior view that fully represents the behavior required
by a Performer. The relationship Behavior Type attribute for integrated behavior is set to “Integrated
(Root).” Traceability between capabilities and the integrated operational behavior view is established
through the basis of relation. Logical groupings (taxonomy) of Capabilities may be established through the
categorized by relation with elements within the class Category. The context-level OperationalActivity is
allocated to the context-level Performer (of Type Context) with the relationship attribute Behavior Type is
set to “Integrated (Root).”15

12 The usage of the term capability is as described in the DoD Architecture Framework, Version 2.02, 28 May 2009. In
DoD-oriented models, capabilities refer to operationally oriented scenarios and threads refer to system-oriented
scenarios.
13 There may be one or more capability requirement establishing the programmatic need and timeframe when the
capability is needed. Capability Requirements are captured in the Requirement class of Type: Capability. In turn, this
capability requirement specifies a capability in the Capability class.
14 Sometimes the external stimulus upon output is not provided because the behavior is internally satisfied within the
component.
15 The Model Assistant may create the Integrated (Root) OperationalActivity upon creation of a Performer element.

CORE Architecture Definition Guide (DoDAF v2.02)

15

OperationalActivity Inputs and Outputs. Each OperationalActivity within a behavioral view will have
input and output OperationalItem elements identified. These OperationalItem elements are associated
with OperationalActivities using the relations: input to / inputs, output from / outputs, and triggers /
triggered by. As with OperationalActivities, OperationalItems should be aggregated to simplify
presentation.

OperationalActivity Assignment. In conjunction with Operational Architecture Synthesis (See
Section 3.1), for each layer of Performers, OperationalActivities in the integrated behavior are
decomposed until they can be uniquely assigned to the next level of Performer using the allocated to
relation. This not only establishes the organization or role that performs the activity, it allows the systems
engineering/architecture team to assess the impact of Performer losses or failures on both Mission and
OperationalActivities, thereby, making it easier for the systems engineering/architecture team to design
countermeasures to mitigate operational impacts of Performer loss or failure.

OperationalActivity Traceability. OperationalActivity traceability from an appropriate Mission element
(or OperationalTask if required) is established using the achieves relation. Establishing this relationship
enables one to easily assess what capabilities and behavior are impacted by a Mission change, as well as
answering the converse question of what Missions are impacted by a capability change or failure.

OperationalActivity traceability from an appropriate Requirement occurs in two senses. These
relationships are the specified by and the based on relations. The specified by relation identifies constraint
or performance requirements that the OperationalActivity must satisfy. The based on relation is used for
all other requirements that apply to the OperationalActivity.

Note: When developing behavior, a root OperationalActivity may be established for any Performer and
the behavior diagram resulting from integrating the capability based OperationalActivities define the full
behavior of the Performer from the Performer's perspective, which satisfies both the Performer's external
observables and its allocated capabilities.

Figure 9 Operational Activity View

Table 6 Operational Activity View

Element Class Attributes Relationships Target Classes

Capability See Section 3.2 based on / basis of OperationalActivity

CORE Architecture Definition Guide (DoDAF v2.02)

16

Table 6 Operational Activity View

Element Class Attributes Relationships Target Classes

Mission See Section 3.2 achieved by / achieves OperationalActivity

Performer

(Type: Operational
Architecture)

See Section 3.1 performs /
allocated to

(Behavior Type:
Capability or
Integrated (Root))

OperationalActivity

OperationalActivity See Section 3.3 achieves / achieved by Mission

OperationalTask

allocated to / performs

(Behavior Type:
Capability or Integrated
[Root])16

Performer

based on / basis of Capability

OperationalActivity

Requirement

basis of / based on OperationalActivity

decomposed by /
decomposes

OperationalActivity

elaborates / elaborated
by

UseCase

inputs / input to OperationalItem

outputs / output from OperationalItem

results in/ result of Capability

Requirement

specified by / specifies Requirement

triggered by / triggers OperationalItem

OperationalItem Accuracy

Description

Doc. PUID

Number

Priority

Timeliness

Type

decomposed by /
decomposes

OperationalItem

implemented by /
implements

Item

input to / inputs OperationalActivity

output from / outputs OperationalActivity

specified by / specifies Requirement

transferred by /
transfers

Needline

triggers / triggered by OperationalActivity

OperationalTask See Section 3.2 achieved by / achieves OperationalActivity

achieves / achieved by Mission

16 A Performer could have multiple OperationalActivities of Behavior Type "Capability" but should have only one
OperationalActivity of Behavior Type "Integrated (Root)."

CORE Architecture Definition Guide (DoDAF v2.02)

17

Table 6 Operational Activity View

Element Class Attributes Relationships Target Classes

Requirement See Section 3.2 basis of / based on OperationalActivity

specifies /specified by Architecture

Capability

OperationalActivity

OperationalItem

Performer

UseCase Alternate Flow

Description

Number

Preconditions

Primary Flow

Postconditions

augmented by /
augments

ExternalFile

describes /
described by

Performer

elaborated by /
elaborates

OperationalActivity

elicits / elicited by Requirement

extended by / extends UseCase

generalization of /
kind of

UseCase

included in / includes UseCase

involves /
participates in

Performer

4.2 State View

A State viewpoint offers an alternative approach for expressing a component’s behavior, the identification
of relative functional timing of a Component or state machine. A State identifies a non-overlapping (i.e.,
one state does not share its behavior with another state) operational and possibly repetitive conditions
occurring during component’s operating lifetime. In other words, the set of States exhibited by a
Component are complete for expressing a Component’s behavior and its logical timing (not absolute
timing). Alternative State representations are possible, but each set definition must be complete and non-
overlapping. Associated with the exhibits / exhibited by relation pair is a behaviorType attribute; the values
of which are: Atomic and Integrated (Root).

A State may exist either because it is documented by a Document or specified by a Requirement. An
ExternalFile or Text element may also augment a State for the purpose of further enhancing the meaning
or representation of the State.

A given State may be a member of a particular subset of States. The collection of such States is
represented as a Mode; this is shown as the State encompassed by a Mode. A Performer exhibits a State,
and also contains a Mode.

Each State incorporates one or more OperationalActivities which specifies behaviors that occur during
the execution of the State. Associated with the incorporates relation is a behaviorType attribute. A
relationship attribute value of “Entry” indicates behavior that is performed upon entry into the State. A value
of “Exit” indicates behavior that is performed immediately before exiting the State. A value of “Integrated
(Root)” indicates behavior that is performed once the “Entry” behavior completes and continues until it
finishes or the State exits.

One or more subordinate States may decompose a single State, which delineates the progression from a
composite State to an atomic State (the targets of the decomposed by relationship is empty). The

CORE Architecture Definition Guide (DoDAF v2.02)

18

movement from one State to another State occurs through a Transition. A State is exited by a Transition
and correspondingly, the Transition enters a new State or may re-enter the same State. However, the
timing of the Transition’s effect is governed by a Guard condition attribute. The Guard condition attribute is
a rule, empty, simple, or complex, which results in a Boolean value (an empty Guard condition is not
evaluated). If true, the transition occurs; otherwise, the transition waits for the Guard condition to change
from false to true.

Events serve to communicate to External State machines at the time point of a Transition. A Transition
triggers an Event and an Event is responsible for an OperationalItem, which conveys the message
governed by the Event.

Figure 10 State View

Table 7 State View

Element Class Attributes Relationships Target Classes

Component See SDG contains / contained by Mode

exhibits / exhibited by State

Event Description

Doc. PUID

augmented by /
augments

ExternalFile

Text

documented /
documents

Document

responsible for /
assigned to

Item

OperationalItem

triggers / triggers Transition

Function See SDG incorporated by /
incorporates

State

CORE Architecture Definition Guide (DoDAF v2.02)

19

Element Class Attributes Relationships Target Classes

services / serviced by Transition

Item See SDG assigned to /
responsible for

Event

Mode Description

Doc. PUID

Number

augmented by /
augments

ExternalFile

Text

contained by / contains Component

Performer

documented by /
documents

Document

encompasses /
encompassed by

State

impacted by / impacts Concern

Risk

specified by / specifies Requirement

OperationalActivity See Section 3.3 incorporated by /
incorporates

State

services / serviced by Transition

OperationalItem See Section 4.1 assigned to /
responsible for

Event

Performer See Section 3.1 contains / contained by Mode

State Description

Doc. PUID

Number

Title

augmented by /
augments

ExternalFile

Text

decomposed by /
decomposes

State

documented by /
documents

Document

encompassed by /
encompasses

Mode

entered by / enters Transition

exhibited by / exhibits Component

Performer

exited by / exits Transition

impacted by / impacts Concern

Risk

incorporates /
incorporated by

Function

OperationalActivity

specified by / specifies Capability

Requirement

Transition Delay

Delay Units

Description

Guard

Number

augmented by /
augments

ExternalFile

Text

documented by /
documents

Document

enters / entered by State

CORE Architecture Definition Guide (DoDAF v2.02)

20

Element Class Attributes Relationships Target Classes

exits / exited by State

triggered by / triggers Event

5. OPERATIONAL ARCHITECTURE SYNTHESIS

5.1 Assign OperationalActivities to Next Level of Performers

In conjunction with the analysis of the CONOPS document, OperationalActivity as well as Performer
decomposition occurs in tandem as part of the process to refine the operational architecture. This
hierarchical decomposition process results in more specificity regarding subordinate Performers and their
required behavior.

As the Performer hierarchy evolves, Performers uniquely perform more specific OperationalActivities.
OperationalActivity refinement is accomplished in layers. When a decomposed root or capability
OperationalActivity is allocated to a Performer, all lower-level OperationalActivities in its decomposition
path are part of the behavior of the Performer. The Performer may be correspondingly decomposed, in
which case even lower-level OperationalActivities are allocated to the lower-level Performers. The
lowest-level assignments are termed Atomic. Since OperationalActivities can be aggregated to enhance
understanding, there is not necessarily a one-to-one correspondence between levels in the
OperationalActivity hierarchy and levels in the Performer hierarchy.

Performers are mapped to Organizations using the assigned to relation.17 With all the previous
relationships established as described in Section 4.1 for each layer of Performer decomposition, then it is
possible, through tracing the appropriate relationships, to identify what capabilities and integrated behavior
the Organization is responsible for as well as any subordinate Missions, if they were defined.

Note: As stated in Section 4.1, when developing behavior, a root OperationalActivity can be established
for any Performer and the behavior diagram constructed using the atomic OperationalActivities, which
defines the full behavior of the Performer from the Performer’s perspective rather than from the
architecture’s perspective.

Figure 11 Performer Hierarchy and OperationalActivity Assignment

17 Organizations, organizational units, roles, etc. are represented as Organizations elements with a parent-child
relationship reflecting command structure. They are also represented as Performers in which case hierarchically
related units are often peers because of the OperationalActivities that they perform and the communication need

between them.

CORE Architecture Definition Guide (DoDAF v2.02)

21

Table 8 Performer Hierarchy and OperationalActivity Assignment

Element Class Attributes Relationships Target Classes

Performer See Section 3.1 assigned to /
responsible for

Organization

built from / built in Performer

built in / built from Performer

performs /
allocated to

OperationalActivity

OperationalActivity See Section 3.3 allocated to / performs Performer

Organization See Section 3.3 responsible for /
assigned to

Performer

5.2 Refine External Needline Definitions

An external Needline element identifies the fact that the operational architecture communicates in some
manner with an external Performer (See Section 3.4).18 Needlines are decomposable by means of the
includes relation. Since a Needline has a maximum of two targets, a decomposable Needline enables the
systems engineer/architect to make the Needline connections consistent with the Performer hierarchy,
without having to move a terminus point of a Needline to a lower-level Performer. This simplifies the
maintenance of Needlines through the architecture.

Needlines may be specified by performance and constraint Requirements. Only a Needline should
transfer the lowest layer of OperationalItem.

Figure 12 External Needline Definition

18 If the external Performer is a threat source, then the communication element offered by the threat source is some
observable that an OperationalActivity within the Architecture can recognize. Including externals such as a threat

source allows the engineering team to better analyze and specify the architecture.

CORE Architecture Definition Guide (DoDAF v2.02)

22

Table 9 External Needline Definition

Element Class Attributes Relationships Target Classes

Needline See Section 3.4 connects to /
connected to

Performer

includes / included in Needline

transfers /
transferred by

OperationalItem

OperationalActivity See Section 3.3 allocated to / performs Performer

inputs / input to OperationalItem

outputs / output from OperationalItem

triggered by / triggers OperationalItem

OperationalItem See Section 4.1 transferred by /
transfers

Needline

input to / inputs OperationalActivity

outputs / output from OperationalActivity

triggers / triggered by OperationalActivity

Performer See Section 3.1 connected to /
connects to

Needline

built from / built in Performer

CORE Architecture Definition Guide (DoDAF v2.02)

23

5.3 Derive or Refine Internal Needlines

Within the Performer hierarchy, the assignment of OperationalActivities to Performers establishes the
internal Needlines of the Architecture based on the OperationalItems that flow between the assigned
OperationalActivities. The internal Needlines are formalized in the repository using the Needline element
class.

Needlines are decomposable by means of the includes relation. Since a Needline has a maximum of two
targets, a decomposable Needline enables the systems engineer/architect to make the Needline
connections consistent with the Performer hierarchy, without having to move a terminus point of a
Needline to a lower-level Performer. This simplifies the maintenance of Needlines through the
architecture.

As the Performer hierarchy evolves further, the lower-level Performers, terminating a Needline, perform
OperationalActivities and these outputs, inputs, or triggered by the OperationalItems transferred by the
Needlines.

Needlines may be specified by performance and constraint Requirements. Only a Needline should
transfer the lowest-layer of OperationalItem.

Figure 13 Internal Needline Definitions

Table 10 Internal Needline Definitions

Element Class Attributes Relationships Target Classes

Needline See Section 3.4 connects to /
connected to

Performer

includes / included in Needline

transfers / transferred
by

OperationalItem

OperationalActivity See Section 3.3 allocated to /
performs

Performer

inputs / input to OperationalItem

CORE Architecture Definition Guide (DoDAF v2.02)

24

Table 10 Internal Needline Definitions

Element Class Attributes Relationships Target Classes

outputs / output from OperationalItem

triggered by / triggers OperationalItem

OperationalItem See Section 4.1 transferred by /
transfers

Needline

input to / inputs OperationalActivity

output from / outputs OperationalActivity

triggers / triggered by OperationalActivity

Performer See Section 3.1 connected to /
connects to

Needline

performs / allocated
to

OperationalActivity

6. OPERATIONAL VIEWPOINT VALIDATION USING CORESIM

COREsim is a discrete event simulator that executes the OperationalActivity and Needline behavior
views to provide an assessment of operational architecture performance and to verify the dynamic integrity
of the conceptual model. COREsim dynamically interprets a behavior view (i.e., an Activity Diagram,
Enhanced Functional Flow Block Diagram [EFFBD]) in conjunction with Needlines and identifies and
displays timing, resource utilization, operational item flow, and behavioral inconsistencies. COREsim usage
should be an integral part of operational analysis and operational architecture synthesis.

7. OPERATIONAL ARCHITECTURE CONSIDERATIONS

Definition of the operational and systems architecture should be done consistently with the structured
approach documented in the SDG. Although the operational architecture may involve numerous systems,
the SDG principles remain unchanged. Systems engineering/architecture activities needed to complete the
architecture and to interrelate the operational and systems domains are addressed in the following sections.

7.1 Performance Requirements

Elements in the Requirement class are used to capture performance requirements and parameters for
system elements. Performance requirements and parameters include both current values for existing
elements and threshold and objective values per time frame for existing or new elements.

Figure 14 Performance Requirements

CORE Architecture Definition Guide (DoDAF v2.02)

25

Table 11 Performance Requirements

Element Class Attributes Relationships Target Classes

Needline See Section 3.4 specified by /
specifies

Requirement

OperationalActivity See Section 3.3 based on / basis of Requirement

Performer See Section 3.1 specified by /
specifies

Requirement

Requirement

See Section 3.2

basis of / based on OperationalActivity

specifies / specified
by

Performer
Needline

7.2 Services Development

Services exist as both a subset of functional behavior and as part of a system. Within the functional behavior
view [in the Function class], all leaf-level elements that compose the functionality of a service are collected
under a root Function via the decomposed by relation.

Services are created as a Component element with the Type attribute set to Service. The Service Type
attribute should be set to Consumer, Provider, or Both as appropriate. The Component element performs
the root Function, with the performs behavior Type attribute set to: Integrated (Services).

A service specification contains the attributes of a service to be included in the DoDAF viewpoints for a net-
centric environment or hybrid system. Service attributes for an internal service [one which is being
developed] are developed throughout the operational and system analysis process and are documented in
the ServiceSpecification class. Service attributes, for an external service [one which is an external in the
system context], are provided by the service provider. A Component of type Service documents a
ServiceSpecification.

Figure 15 Services

Table 12 Services

Element Class Attributes Relationships Target Classes

Component

See SDG built from / built in Component

(Type: Service)

CORE Architecture Definition Guide (DoDAF v2.02)

26

Table 12 Services

Element Class Attributes Relationships Target Classes

Component

(Type: Service)

See SDG connected to /
connects to

Link

documented by /

documents

ServiceSpecification

joined to / joins Interface

performs /
allocated to

(Behavior Type:
Integrated (Services))

Function

Function See SDG allocated to /

performs

(Behavior Type:
Integrated (Services)

Component

decomposed by /
decomposes

Function

Link See SDG connected to /
connects to

Component

ServiceSpecification Access Criteria

Authentication
Mechanism

Data Types

Effects

Information Security
Markings

Overview

Point Of Contact

SAP Type

Service Access
Point

Service Version

WDSL

documents /
documented by

Component

(Type: Service)

7.3 Requirements Development

Capabilities, OperationalActivities and UseCases serve as sources for system Requirements.
Capabilities, more typically are associated with OperationalActivities, which lead to the identification and
definition of functional Requirements. However, Capabilities, in themselves, may directly lead to system
Requirements. UseCases lead to the identification and definition of functional and performance
Requirements. The results in / result of relations are used to map elements in these classes. Thus, a
Requirement is the result of an OperationalActivity or a UseCase. See the SDG for a description and
use of Requirement attributes.

CORE Architecture Definition Guide (DoDAF v2.02)

27

Figure 16 Requirements Development

Table 13 Requirements Development

Element Class Attributes Relationships Target Classes

Capability See Section 3.2 implemented by /
implements

Requirement

result of / results in OperationActivity

OperationalActivity See Section 4.1 results in / result of Capability

Requirement

Requirement See Section 3.2 basis of / based on UseCase

implements /
implemented by

Capability

result of / results in OperationalActivity

UseCase See Section 4.1 based on / basis of Requirement

7.4 Traceability from Operational Architecture

The implemented by / implements relations map the operational behavior and Performers to the system
behavioral and physical elements. These relation pairs enable full traceability from the operational domain
into either the system’s physical domain, functional domain, or both and therefore, make it easier for the
systems engineering team to assess the impacts in the system domain when changes occur within the
operational domain. Conversely, the reverse mapping of the system domain into the Performers,
operational behavior, or both again makes it easier for the systems engineering/architecture team to assess
the impacts within the operational domain when changes occur in the systems domain. See the SDG
regarding Component, Function, Item, and Link.

CORE Architecture Definition Guide (DoDAF v2.02)

28

Figure 17 Operational to Systems Traceability

Table 14 Operational to Systems Traceability

Element Class Attributes Relationships Target Classes

Capability See Section 3.2 implemented by /
implements

Requirement

Component See SDG implements /
implemented by

Performer

Function See SDG implements /
implemented by

(Status: nil,
Planned, Partial, or
Full)

OperationalActivity

Item See SDG implements /
implemented by

OperationalItem

Link See SDG implements /
implemented by

Needline

Needline See Section 3.4 implemented by /
implements

Link

OperationalActivity See Section 3.3 implemented by /
implements

(Status: nil,
Planned, Partial, or
Full)

Function

OperationalItem See Section 4.1 implemented by /
implements

Item

CORE Architecture Definition Guide (DoDAF v2.02)

29

Table 14 Operational to Systems Traceability

Element Class Attributes Relationships Target Classes

Performer See Section 3.1 implemented by /
implements

Component

Requirement See Section 3.2 implements /
implemented by

Capability

8. PROGRAM MANAGEMENT ASPECTS

Managing architecture development and systems development within a MBSE environment should conform
to whether the programs or projects are top-down, bottom-up, or middle-out in nature. The DoDAF-
described models within the Project Viewpoint describe how programs, projects, portfolios, or initiatives
deliver capabilities, the organizations contributing to them, and dependencies among them. Previous
versions of DoDAF took a traditional modeling approach of architecture in which descriptions of programs
and projects were considered outside DoDAF’s scope. To compensate for this, various DoDAF views
represented the evolution of systems, technologies and standards (e.g., Systems and Services Evolution
Description, Systems Technology Forecast, and Technical Standards Forecast), which had a future
programmatic cast. The integration of Project Viewpoints (organizational and project-oriented) with the
more traditional architecture representations characterizes DoDAF-v2.02-based enterprise architectural
descriptions.

8.1 Program/Project Basics

Organizations and Architectures are related through the Program/Project Viewpoint to relate the
enterprise’s objectives with the Architecture and those Organizations involved. The Program or Project
viewpoint develops from the ProgramElement class. Each element within the ProgramElement class
represents some aspect of the structure of the program or project. These elements are related through the
included in / includes relation pair. When complete, the resulting hierarchical structure represents the Work
Breakdown Structure for the program or project. The Type attribute identifies whether the program element
instance is a Program, Project, Work Package or Task. The top-most program element (Type: Program)
implements an Architecture.19 Assigned to each ProgramElement is an Organization, which is
responsible for some aspect of the program/project. A ProgramElement of Type: Task represents the
lowest ProgramElement for which cost accounting is performed.

The top-most ProgramElement is specified by one or more programmatic Requirements, which are
represented as elements within the Requirement class. These Requirements describe the desired effect
(outcome) or achievement level in operational processes, projects, or special programs. Subordinate
Requirements may specify lower-level ProgramElements (Type: Project, Work Package or Task).
Program/Project risks are followed and managed through the Risk class. Normally, a ProgramElement
resolves a Risk by instituting strategies to mitigate the risk; however, provision is made for those cases
where a ProgramElement may in itself cause a Risk, which program managers must mitigate. The
acquisition of Capabilities is another important aspect of Program Management. A Capability is provided
by a ProgramElement, which implements an Architecture. Note: A Capability is the basis of an
OperationalActivity (see Section 4.1). A ProgramElement also supplies one or more stakeholder
deliverables (i.e., an element of some or all of these classes Capability, Component, Document or
Performer).

19 Enterprise architecture would cover multiple programs and each program may include multiple projects.

CORE Architecture Definition Guide (DoDAF v2.02)

30

Figure 18 Program Management Basics

Table 15 Program Management Basics

Element Class Attributes Relationships Target Classes

Architecture See Section 3.1 implemented by /
implements

(Status: nil,
Planned, Partial, or
Full)

ProgramElement

Capability See Section 3.2 supplied by /
supplies

ProgramElement

Component See SDG supplied by /
supplies

ProgramElement

Document See Section 3.2 supplied by /
supplies

ProgramElement

Performer See Section 3.1 supplied by /
supplies

ProgramElement

Organization See Section 3.3 responsible for /
assigned to

ProgramElement

CORE Architecture Definition Guide (DoDAF v2.02)

31

Table 15 Program Management Basics

Element Class Attributes Relationships Target Classes

Product Description

Number

Size

Size Units

Type

decomposed by /
decomposes

Product

input to / inputs ProgramActivity

output from /
outputs

ProgramActivity

triggers / triggered
by

ProgramActivity

ProgramElement Contract Number

Cost

Description

End Date

Labor Hours

Non-recurring Cost

Start Date

Type

accomplishes /
accomplished by

ProgramActivity

assigned to /
responsible for

Organization

augmented by /
augments

ExternalFile

causes / resolves Risk

implements /
implemented by

Architecture

includes /
included in

ProgramElement

provides / provided
by

Capability

resolves / causes Risk

specified by /
specifies

Requirement

supplies /
supplied by

Component

Performer

8.2 Program Management Activity View

Another important facet of program management is developing and maintaining program or project
schedules, i.e., timelines. These timelines are established through the ProgramActivity class. The
ProgramActivity class allows the program management team to establish the sequencing of work
necessary to accomplish the Task, Work Package, Project, or Program of a ProgramElement.

The ProgramActivity behavior of a ProgramElement of Type: Project is the cumulative behaviors of all
subordinate ProgramElement behaviors. The intent of each ProgramElement element is accomplished
by a ProgramActivity and correspondingly, the behavior of each ProgramActivity accomplishes the intent
of its ProgramElement. The integrated ProgramActivity behavior is developed from integrating
subordinate Task, Work Package, or Project behaviors (workflows) into a single behavior view that fully
represents the workflow required by the parent ProgramActivity. COREsim (see Section 6) will execute
the program activity views to provide an assessment of the timeline performance (schedule) and to verify
the dynamic integrity of the conceptual program management view. COREsim dynamically interprets a
behavior view (i.e., the EFFBD) and identifies and displays timing, resource usage, product flow, and
viewpoint inconsistencies.

ProgramActivity Inputs and Outputs. Each ProgramActivity’s integrated behavior will have input and
output Product elements identified. These Product elements are associated with ProgramActivities using

CORE Architecture Definition Guide (DoDAF v2.02)

32

the relationships: input to/inputs, output from/outputs, and triggers/triggered by. As with ProgramActivities,
Products should be aggregated to simplify presentation.

Requirements Traceability. ProgramActivity traceability to an appropriate Requirement element is
established using the based on relation. Traceability to a ProgramElement uses the accomplishes relation
thereby, identifying the ProgramActivities that accomplish some aspect of the work breakdown structure.

ProgramActivity traceability from an appropriate Capability occurs through the supplied by relation to an
intermediary ProgramElement. The ProgramElement is accomplished by one or more
ProgramActivities that apply for achieving that Capability.

Figure 19 Program Activity View

Table 16 Program Activity View

Element Class Attributes Relationships Target Classes

Capability See Section 3.2 supplied by /
supplies

ProgramElement

Component See SDG supplied by /
supplies

ProgramElement

Performer See Section 3.1 supplied by /
supplies

ProgramElement

ProgramElement See Section 8.1 accomplishes /
accomplished by

ProgramActivity

assigned to /
responsible for

Organization

augmented by /
augments

ExternalFile

causes / resolves Risk

CORE Architecture Definition Guide (DoDAF v2.02)

33

Table 16 Program Activity View

Element Class Attributes Relationships Target Classes

implements /
implemented by

Architecture

included in /
includes

ProgramElement

resolves / causes Risk

specified by /
specifies

Requirement

supplies /
supplied by

Capability

Component

Document

Performer

Product See Section 8.1 augmented by /
augments

ExternalFile

decomposed by /
decomposes

Product

documented by /
documents

Document

input to / inputs ProgramActivity

output from /
outputs

ProgramActivity

specified by /
specifies

Requirement

triggers / triggered
by

ProgramActivity

9. DOCUMENTATION—DODAF V2.02 VIEWPOINTS

CORE includes a set of scripts to output each of the DoDAF v2.02 viewpoints as Rich Text Format (RTF)
documents. As appropriate to the particular viewpoint, each viewpoint document contains a standard CORE
diagram, a table generated from the contents of the repository, or an external file referenced by an
ExternalFile element. Because the viewpoints are generated as a result of applying the MBSE process to
architecture definition, these scripts have been designed to be flexible in order to support the
architects/systems engineers developing the architecture on an on-going basis and to produce the
viewpoints for customer usage.

Table 17 DoDAF v2.02 Viewpoint Scripts

Viewpoint Viewpoint Title Script Output

AV-1 Overview and Summary
Information

User selected Architecture Description, Purpose,
Scope, Time Frame, achieves Mission name and
Description, and augmented by Text and
ExternalFiles.

AV-2 Integrated Dictionary User selected Architecture.

CV-1 Vision User selected Architecture implemented by
ProgramElement, which provides Capability.

CV-2: Capability Taxonomy User selected Architecture implemented by

CORE Architecture Definition Guide (DoDAF v2.02)

34

Table 17 DoDAF v2.02 Viewpoint Scripts

Viewpoint Viewpoint Title Script Output

ProgramElement, which supplies Capability, and
Capability is refined by Capability.

CV-3 Capability Phasing User selected Architecture implemented by
ProgramElement, which supplies Capabilities.
ProgramElements determine when projects supplying
elements of capability are to be delivered, upgraded
and/or withdrawn.

CV-4 Capability Dependencies Category categorizes Capability

CV-5 Capability to Organizational
Development Mapping

User selected Architecture specified by Capability
refined by Capability

CV-6 Capability to Operational
Activities Mapping

User selected Architecture specified by Capability
refined by Capability basis of OperationalActivity
allocated to Performer

CV-7 Capability to Services
Mapping

Matrix mapping Capability to Performer of type Service
Functionality Provider

DIV-1 Conceptual Data Model Data elements used and their attributes and relations
stemming from the Architecture composed of
Component of Type, perform Functions of Type:
Service.

DIV-2 Logical Data Model Outputs characteristics of OperationalItems that are
output from, input to, or triggers one or more
OperationalActivities, which are derived from a user
selected Architecture composed of Performers. A
Performer performs an OperationalActivity, its
children, and, optionally, their children.

DIV-3 Physical Data Model Outputs an OperationalItem characteristics table for
OperationalItems related to a user selected
Architecture, OperationalItems are derived from a
user selected Architecture composed of Performers.
A Performer performs an OperationalActivities, its
children, and, optionally, their children.

OV-1 High-Level Operational
Concept Graphic

Outputs a hierarchy diagram and/or ExternalFile for
each Performer composing an Architecture.

OV-2 Operational Resource Flow
Description

Physical Block Diagram (PBD) for each Performer
composing an Architecture.

OV-3 Operational Resource Flow
Matrix

Summary matrix or full matrix for information exchanges
of the children of OperationalActivity(s) allocated to
Performers composing the user selected
Architecture.

OV-4 Organization Relationships
Chart

Organization Hierarchy stemming for each Architecture
assigned to an Organization.

OV-5a Operational Activity
Decomposition Tree

Capability to Operational Activities Hierarchy for
Capability specifies Architecture

Performer Operational Activities Hierarchy for
OperationalActivity(s) allocated to Performers that
compose the user selected Architecture.

OV-5b Operational Activity Model User selected behavior diagram for presenting an

CORE Architecture Definition Guide (DoDAF v2.02)

35

Table 17 DoDAF v2.02 Viewpoint Scripts

Viewpoint Viewpoint Title Script Output

OperationalActivity and its children. Includes optional
output of Function Hierarchy for selected
OperationalActivity.

OV-6a Operational Rules Model EFFBD or Activity Diagrams for OperationalActivity(s)
allocated to Performers that compose the user
selected Architecture, with Requirements of Type:
Guidance, which specifies one or more
OperationalActivities.

OV-6b State Transition Description User selected ExternalFiles and States that are
exhibited by Performers that compose the user
selected Architecture.

OV-6c Event-Trace Description Sequence Diagrams for OperationalActivity(s)
allocated to Performers that compose the user
selected Architecture.

PV-1 Project Portfolio
Relationships

Organization linked to ProgramElement and one
hierarchical level below the top ProgramElement to
account for Projects subordinate to a Program.

PV-2 Project Timelines An ExternalFile and ProgramElement Table derived
from a user selected Architecture.

PV-3 Project to Capability Mapping User selected Architecture implemented by
ProgramElements mapped to Capabilities.

SvcV-1 Services Context Description Hierarchy and Interface Block Diagrams for
Component(s) of type Service that composes the
user selected Architecture. Also, an Element
Definition and Interconnection Table for the
Components, Interfaces, Items and Links
encountered.

SvcV-2 Services Resource Flow
Description

Physical Block Diagram and Resource Flow Table for
Component(s) of type Service that composes the
user selected Architecture.

SvcV-3a Systems-Services Matrix Matrix identifying interfacing Component(s) of type
Service with those Component(s) that are not of type
Service that composes the user selected
Architecture.

SvcV-3b Services-Services Matrix Matrix identifying interfacing Component(s) of type
Service that composes the user selected
Architecture.

SvcV-4 Services Functionality
Description

User selected behavior diagrams and tables for
Function(s) allocated to Component(s) of type
Service that composes the user selected
Architecture.

SvcV-5 Operational Activity to
Services Traceability
Matrix

Matrix mapping Functions allocated to Component(s)
type Service that composes the user selected
Architecture and their associated Links, Functions,
and Interfaces to OperationalActivity(s).

SvcV-6 Services Resource Flow
Matrix

Summary matrix or full matrix for data exchanges of the
children of Component (s) of type Service that

CORE Architecture Definition Guide (DoDAF v2.02)

36

Table 17 DoDAF v2.02 Viewpoint Scripts

Viewpoint Viewpoint Title Script Output

composes the user selected Architecture.

SvcV-7 Services Measures Matrix Quantitative performance measures (Requirements of
Type performance) for the children of Component(s)
of type Service that composes the user selected
Architecture and their associated Interfaces, Links,
and Functions.

SvcV-8 Services Evolution
Description

User selected ExternalFile.

SvcV-9 Services Technology & Skills
Forecast

User selected ExternalFile.

SvcV-10a Services Rules Model Table for Document(s) of type Guidance or Standard,
which document Requirement(s). A second table,
which document Components, Functions,
Interfaces, Items and Links.

SvcV-10b Services State Transition
Description

Hierarchy Diagram of Components of type Service that
exhibits State(s) that composes the user selected
Architecture.

SvcV-10c Services Event-Trace
Description

Sequence Diagram and table for service related
Functions allocated to Component(s) of type Service
that composes the user selected Architecture.

StdV-1 Standards Profile A table of standards that apply to solution elements
along with the description of emerging standards and
potential impact on current solution elements, within a
set of time frames.

StdV-2 Standards Forecast See StdV-1

SV-1 Systems Interface
Description

Interface Block Diagram and Interconnection Table for
Component(s) type System that composes user
selected Architecture.

SV-2 Systems Resource Flow
Description

Physical Block Diagram and Resource Flow Table for
Component(s) of type System that composes user
selected Architecture.

SV-3 Systems-Systems Matrix Matrix identifying interfacing Component(s) of types
other than Service that composes the user selected
Architecture.

SV-4 Systems Functionality
Description

User selected behavior diagrams and tables for
Function(s) allocated to Component(s) type System
that composes the user selected Architecture.

SV-5a Operational Activity to
Systems Function
Traceability Matrix

Matrix mapping Functions allocated to Component(s) of
type System that composes the user selected
Architecture and their associated
OperationalActivity(s), Performers and
Capabilities.

SV-5b Operational Activity to
Systems Traceability
Matrix

Matrix mapping Component(s) of type System that
composes the user selected Architecture and their
associated OperationalActivity(s).

SV-6 Systems Resource Flow Summary matrix or full matrix for data exchanges of the
children of Component(s) of type System that

CORE Architecture Definition Guide (DoDAF v2.02)

37

Table 17 DoDAF v2.02 Viewpoint Scripts

Viewpoint Viewpoint Title Script Output

Matrix composes the user selected Architecture.

SV-7 Systems Measures Matrix Quantitative performance measures (Requirements of
Type performance) for the children of Component(s)
of type System that composes the user selected
Architecture and their associated Interfaces, Links,
and Functions.

SV-8 Systems Evolution
Description

User selected Component and ExternalFile.

SV-9 Systems Technology & Skills
Forecast

User selected Component and ExternalFile.

SV-10a Systems Rules Model EFFBD or Activity diagrams for Function(s) allocated to
Components(s) of type System that composes the
user selected Architecture.

SV-10b Systems State Transition
Description

Hierarchy Diagram of Components of type System that
exhibits State(s) that composes the user selected
Architecture.

SV-10c Systems Event-Trace
Description

Sequence Diagram and table for system related
Functions allocated to Component(s) of type System
that composes the user selected Architecture.

In addition to the DoDAF viewpoint scripts, CORE provides numerous engineering support scripts such as
the Generic Table Output, Indented Hierarchy Reports, Element Definition, HTML Report, etc. These should
be used on an on-going basis to aid the systems engineers in communication and assessment of the
architecture definition.

Vitech Corporation
2270 Kraft Drive, Suite 1600
Blacksburg, Virginia 24060
540.951.3322 FA X: 540.951.8222
Customer Support: support@vitechcorp.com
www.vitechcorp.com

mailto:support@vitechcorp.com
http://www.vitechcorp.com/

