
CORE 8 Architecture Definition Guide

CORE® 8

Architecture

Definition Guide

CORE 8 Architecture Definition Guide

ii

Copyright © 2005 - 2011 Vitech Corporation. All rights reserved.

No part of this document may be reproduced in any form, including, but not limited to, photocopying,
translating into another language, or storage in a data retrieval system, without prior written consent of
Vitech Corporation.

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph
(c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.277-7013.

Vitech Corporation

2270 Kraft Drive, Suite 1600
Blacksburg, Virginia 24060

540.951.3322 FAX: 540.951.8222
Customer Support: support@vitechcorp.com

www.vitechcorp.com

CORE® is a registered trademark of Vitech Corporation.

Other product names mentioned herein are used for identification purposes only, and may be
trademarks of their respective companies.

Publication Date: October 2011

mailto:support@vitechcorp.com
http://www.vitechcorp.com/
http://www.vitechcorp.com/

CORE 8 Architecture Definition Guide

iii

CONTENTS

PREFACE .. v

ARCHITECTURE CONCEPTS ... ix

Operational and System Architecture Domain Relationships .. x

1 OPERATIONAL CONCEPT CAPTURE .. 1

1.1 Define Architecture ... 1

1.2 Capture Source Material ... 2

1.3 Identify Organizations ... 8

1.4 Define Operational Boundary .. 9

2 OPERATIONAL ACTIVITY ANALYSIS ... 13

2.1 Operational Activity Model ... 13

3 OPERATIONAL ARCHITECTURE SYNTHESIS ... 19

3.1 Assign OperationalActivities to Next Level of Performers .. 19

3.2 Refine External Needline Definitions ... 20

4 OPERATIONAL MODEL VALIDATION USING COREsim .. 25

5 OPERATIONAL ARCHITECTURE CONSIDERATIONS ... 27

5.1 Systems Requirements .. 27

5.2 Services Development ... 28

5.3 Requirements Development ... 31

5.4 Traceability from Operational Architecture .. 32

6 PROGRAM MANAGEMENT ASPECTS .. 35

6.1 Program/Project Basics ... 35

6.2 Program Management Activity Model .. 37

7 DOCUMENTATION—DoDAF v2.0 VIEWPOINTS ... 41

CORE 8 Architecture Definition Guide

iv

LIST OF FIGURES

Figure 1 CORE’s DoDAF v2.0 Schema – Part 1 .. ix

Figure 2 CORE’s DoDAF v2.0 Schema – Part 2 ... x

Figure 3 Architecture Definition... 1

Figure 4 Source Material .. 4

Figure 5 Organizations ... 8

Figure 6 Operational Boundary .. 10

Figure 7 Operational Activity Model .. 15

Figure 8 Performer Hierarchy and OperationalActivity Assignment ... 20

Figure 9 External Needline Definition .. 21

Figure 10 Internal Needline Definition... 23

Figure 11 Performance Parameters ... 27

Figure 12 Services .. 29

Figure 13 Requirements Development ... 31

Figure 14 Operational to Systems Traceability ... 32

Figure 15 Program Management Basics .. 36

Figure 16 Program Activity Model .. 38

LIST OF TABLES

Table 1 Architecture Definition ... 2

Table 2 Source Material .. 4

Table 3 Organizations .. 9

Table 4 Operational Boundary .. 10

Table 5 Operational Activity Model .. 15

Table 6 Performer Hierarchy and OperationalActivity Assignment .. 20

Table 7 External Needline Definition .. 22

Table 8 Internal Needline Definition ... 24

Table 9 Performance Parameters ... 28

Table 10 Services ... 30

Table 11 Requirements Development .. 31

Table 12 Operational to Systems Traceability .. 33

Table 13 Program Management Basics ... 36

Table 14 Program Activity Model .. 39

Table 15 DoDAF v2.0 Viewpoint Scripts .. 41

CORE 8 Architecture Definition Guide

v

PREFACE

This Architecture Definition Guide (ADG) provides a structured approach for populating

a CORE project with architectural definition information using the Department of

Defense Architecture Framework (DoDAF) schema provided with CORE. For detailed

information about DoDAF, refer to the Department of Defense Architecture Framework

Version 2.0, 28 May 2010 (Volume 1, Volume 2, and Volume 3). This guide is written as a

supplement to the CORE System Definition Guide (SDG)1.

A DoDAF architecture contains both operational elements, system elements, and

program management elements; therefore, enterprise and operational development

must consider these three areas2. This ADG presents the activities required to capture

and develop an operational architecture. Operational viewpoints are developed using

model-based systems engineering (MBSE) principles, which apply equally well to

architecture development, and the engineering activities. Integration of the the

operational viewpoints and the system viewpoints occur through the MBSE model as

captured in the CORE repository. These architectural developmental activities may be

expressed in terms of systems engineering domain activities without loss of specificity

or generality. These systems engineering domain activities consist of

operations/requirements analysis, functional analysis, physical architecture synthesis,

and design verification and validation. An overview of the MBSE process is portrayed

below for reference. At all stages of architectural development, CORE can produce

documentation for the purpose of presentation, review, and analysis of the architecture

as well as integrate and compare other architectures. The DoDAF v2.0 viewpoints3

become available as a consequence of applying MBSE to a specific operational

architecture.

This guide describes each architectural development activity and the CORE DoDAF v2.0

schema classes used to capture the associated information along with a schema diagram

and table, identifying the schema classes used when performing this activity. Following

the engineering activity discussion, the associated attributes and relationships are also

presented. In addressing each activity, attention is given to populating the database in a

manner that facilitates the production of DoDAF v2.0 viewpoints using the standard

scripts provided with CORE.

1
 DoDAF v2.0 focuses on providing past, current, and future architectures for the executive/manager, while DoDAF v1.5 and its

predecessors provide material from current and near-term IT architectures primarily for the program office. CORE’s schema
accommodates both perspectives.

2
 Enterprise architectures follow these same principles, however, enterprise architectures are not specifically addressed in this

architecture definition guide.

3
 DoDAF v1.0/v1.5 views are also available for use with legacy architectural models and current models being developed under

these previous versions of DoDAF. Conversion of these models to DoDAF 2.0 models is possible.

CORE 8 Architecture Definition Guide

vi

This guide augments the SDG and the Model-Based Systems Engineering with CORE®

training course. The approach used here is generic and is not exhaustive of all cases and

situations. This approach is written in the context of developing an operational

definition before addressing the system definition. The programmatic aspects will also

vary depending upon the state of the architecture, whether multiple architectures are

being managed, etc. When working with “as-is” architectures, the activities may be

reordered to best capture the existing as-is architecture.

MBSE Activities

The following additional resources are available for use with this guide:

 For descriptions of different behavior diagram notation, and the mechanics of

entering data into CORE, the reader is referred to CORE’s on-line help.

 For the definition of schema terms, the reader is referred to the CORE DoDAF v2.0

schema, which contains descriptions for each schema entity, and to the Schema

Definition Report script that outputs complete documentation of the schema

definition for a selected facility including descriptions for each schema entity.

CORE 8 Architecture Definition Guide

vii

 For details on generating DoDAF v2.0 viewpoints, the reader is referred to the script

help file provided for each DoDAF v2.0 script. The user may access this

documentation by selecting the Run Script icon on the CORE Explorer toolbar,

selecting the DoDAF v20 folder, selecting any one of the DoDAF v2.0 scripts such as

the (AV-1) Overview and Summary Information script, and pressing the Script Help

File button. Note that CORE continues to support the DoDAF views developed to

support DoDAF v1.0/v1.5. These report scripts reside in the DoDAF scripts folder.

CORE 8 Architecture Definition Guide

viii

THIS PAGE INTENTIONALLY BLANK

CORE 8 Architecture Definition Guide

ix

ARCHITECTURE CONCEPTS

As portrayed in Figure 1 CORE’s DoDAF v2.0 Schema – Part 1, CORE divides an

architecture into an Operational Architecture Domain and a System Architecture

Domain. The Operational Architecture Domain is used to capture originating concepts,

capabilities, and the supporting operational analysis to expose the requirements leading

to, and implemented in, the System Architecture Domain.

Figure 1 CORE’s DoDAF v2.0 Schema – Part 1

As portrayed in Figure 1 CORE’s DoDAF v2.0 Schema – Part 2, CORE integrates the

Program Management Domain with both an Operational Architecture Domain and a

System Architecture Domain. The Program Management Domain addresses the

programmatic aspects of the architecture/system to assist in managing the current

effort as well as finding commonality, duplicative, and missing capabilities among

architectures. These aspects help an executive/ manager address duplication,

misappropriation of scarce resources and the timeliness of the delivered capabilities to

the enterprise.

CORE 8 Architecture Definition Guide

x

Figure 2 CORE’s DoDAF v2.0 Schema – Part 2

This Architecture Definition Guide (DoDAF v2.0) provides guidance into structuring the

elements, attributes and relationships that implement the Operational Architecture

Domain and Program Management Domain for a project. Similarly, the System

Definition Guide provides guidance into structuring the elements, attributes and

relationships that implement the System Architecture Domain.

Operational and System Architecture Domain Relationships

The Operational Architecture Domain provides the necessary classes, attributes, and

relationships to capture the foundational concepts, guidance, and the subsequent

operational analysis to support defining the interrelationships among architectures and

systems along with documenting the source requirements for a system [or systems] of

interest. The architecture element which spans the two domains is specified in

paragraph 1.1 Define Architecture and is composed of Performer (of type: Operational

Architecture) and Component (of type: Family of Systems, Systems Architecture, or

System of Systems) element(s).

CORE 8 Architecture Definition Guide

xi

Within the Operational Architecture Domain, the Performer (type: Operational

Architecture) is part of the operational context which also includes the Performer

element(s) that represent the external aspects of the operational domain. See

paragraph 1.4 Define Operational Boundary for details on defining the operational

boundary.

Similarly, the System Architecture Domain includes the Component element (of type:

Family of Systems, Systems Architecture, or System of Systems) which represents the

system(s) of interest. This element forms part of the system context, which includes the

Component element(s) representing the external aspects of the system domain. See

CORE System Definition Guide, paragraph 1.3 Define System Boundary for details on

defining the system boundary.

CORE 8 Architecture Definition Guide

xii

THIS PAGE INTENTIONALLY BLANK

CORE 8 Architecture Definition Guide

1

1 OPERATIONAL CONCEPT CAPTURE

This section is written assuming that the customer or end-user has provided a Concept of Operations

(CONOPS) or an operational capabilities or operational requirements document. If that is not the case,

it is then assumed that the system/architectural engineering team will start with the task of collecting

all stakeholder needs and transforming them into the required operational information. The end

result of this effort will be a collection of requirements that are treated as originating operational

requirements and/or architectural guidance information (See Section 1.2).

1.1 Define Architecture

Identify the architecture. Architectures exist for the purpose of achieving a well-

defined system or more broadly for the enterprise, system of systems (as defined in

both the operational and system domains) for a specific time frame or time frames. The

Architecture class is used to identify an architecture and its time frame. Each

architecture is composed of an operational architecture and a systems architecture.

Performers (operational nodes in DoDAF v1.5) in the operational architecture are

represented in CORE using the Performer class. Physical entities, including collections of

systems, interfacing systems, and entities within the systems architecture, are

represented in CORE using the Component class. A Performer’s or Component’s Type

attribute designates what the element represents (in this case an operational

architecture for a Performer and systems architecture, system of systems, or family of

systems for a Component). The Type attribute may indicate the role of the element or

its relative position within the performer hierarchy.

Figure 3 Architecture Definition4

4
 The relationships presented in this figure and the following are not exhaustive but to show the primary relationships for the

topical area.

CORE 8 Architecture Definition Guide

 2

Table 1 Architecture Definition

Element Class Attributes Relationships Target Classes

Architecture Description

Number

Purpose

Scope

Time Frame5

composed of / composes Component

Performer

Component See SDG

Type: Family of

Systems, Systems

Architecture, or

System of Systems

composes / composed of Architecture

Performer Abbreviation

Cost

Description

Doc. PUID

Latitude

Location6

Longitude

Number

Purpose

Type: Operational

Architecture

composes / composed of Architecture

1.2 Capture Source Material

Capturing source material involves the creation of the following entries in the database

depending on the information provided or needed:

 Capability element for each source capability statement7

5
 It is recommended that the Architecture for each distinct time frame be captured in separate CORE Projects.

6
 The Location attribute provides a means of specifying physical and logical locations (addresses) in conjunction with physical

latitude and longitude or independent of latitude and longitude.

7
 A Capability Requirement is distinguished from a Capability and is placed in the Requirement class with the type attribute set

to Capability

CORE 8 Architecture Definition Guide

3

 Document element for each source document

 Mission element for each pertinent mission area or description

 OperationalTask element for each operational task from a source such as the

Universal Joint Task List (UJTL) or the Mission Essential Task List (METL)8

 Requirement element for each source requirement9

 ExternalFile element for each source requirement, mission, or operational task-

related table or graphic

 DefinedTerm element for each pertinent acronym or special term in the source

documents

As part of the process of capturing source material, the following should be done:

 Place any tables and graphics in separate files and reference them in the project

database using ExternalFile elements where each augments the subject element.

The formal documentation scripts, as well as the Architecture Description Document

(ADD) and System Description Document (SDD) scripts, will automatically include

these external tables and graphics in the output immediately following the element

Description and make entries in the List of Figures and List of Tables, as appropriate.

In order to properly number and label the tables and graphics for inclusion in the

output, only a single graphic or table should appear in each file.

 Acronyms and/or special terms appearing in the source document should be

captured in the database as DefinedTerms. For an acronym or abbreviation, the

acronym is entered into the Acronym attribute and what it stands for is entered as

the name of the element. For a special term, the term is the name of the element

and its definition is entered into the Description attribute. By filling in both the

Acronym and Description attributes, appropriate entries will appear in both the

acronym and glossary sections of the ADD.

Extracting elements from source documents. The entry of source elements into a CORE

database may be accomplished by using one or more of the following:

 Element Extractor window

8
 The OperationalTask class is only used in those instances where traceability from a source such as the UJTL or METL is

required. These tasks are specified, not derived.

9
 Examples are architecture and operational constraints and task performance characterization.

CORE 8 Architecture Definition Guide

 4

 Document/Shall Parser script if extracting requirements

 Advanced CSV File Parser script if the elements are being transferred as a CSV file

from another application such as IBM® Rational® DOORS®, Microsoft Excel, or

Microsoft Access

 Copy and Paste or Paste Unformatted commands.

Figure 4 Source Material

Table 2 Source Material

Element Class Attributes Relationships Target Classes

Architecture See 1.1 achieves / achieved by Mission

augmented by /

augments

ExternalFile

composed of /

composes

Component

Performer

documented by /

documents

Document

implemented by /

implements

ProgramElement

CORE 8 Architecture Definition Guide

5

Table 2 Source Material

Element Class Attributes Relationships Target Classes

specified by / specifies Capability

Requirement

Capability Benefit

Description

Doc. PUID

Key Performance

Parameter

Origin

Paragraph Number

Paragraph Title

Rationale

augmented by /

augments

ExternalFile

basis of / based on OperationalActivity

documented by /

documents

Document

implemented by /

implements

Requirement

provided by/ provides ProgramElement

refined by / refines Capability

refines / refined by Capability

specified by / specifies Architecture

Interface

Needline

OperationalItem

Performer

Requirement

State/Mode

supplied by / supplies ProgramElement

DefinedTerm Acronym

Description

used in / uses Document

CORE 8 Architecture Definition Guide

 6

Table 2 Source Material

Element Class Attributes Relationships Target Classes

Document CDRL Number

Description

Document Date

Document Number

Govt. Category

Non-Govt. Category

External File Path

Number

Type

documents /

documented by10

Architecture

Mission

OperationalTask

Requirement

uses / used in DefinedTerm

ExternalFile Description

External File Path

Number

Page Orientation

Title

Type

augments /

augmented by11

Mission

OperationalTask

Requirement

Mission Description

Number

achieved by / achieves Architecture

OperationalTask

augmented by /

augments5

ExternalFile

documented by /

documents

Document

guides / guided by Architecture

included in / includes Mission

10

 Only the top-level Mission, OperationalTask, and Requirement elements need to be documented by the source Document.
11

 The Position attribute of this relationship should be set to control the order in which multiple external files are appended to
the element's Description attribute when it is output in the ADD.

CORE 8 Architecture Definition Guide

7

Table 2 Source Material

Element Class Attributes Relationships Target Classes

includes / included in Mission

OperationalTask Description

Number

achieves / achieved by Mission

augmented by /

augments5

ExternalFile

documented by /

documents

Document

included in / includes OperationalTask

includes / included in OperationalTask

Requirement Description

Doc. PUID

Key Performance

Parameter

Incentive Performance

Parameter12

Number

Origin: Operational

Paragraph Number6

Paragraph Title6

Rationale

Units

Value

Weight Factor

augmented by /

augments5

ExternalFile

documented by /

documents

Document

refined by / refines Requirement

refines / refined by Requirement

Warning: The default font for text attributes, such as Description, is Times New Roman

10. Within a text attribute, the user has control over color, fonts, styling, sizing, and

12

 This parameter identifies the performance requirement or other requirement incentivized on a particular contract.

CORE 8 Architecture Definition Guide

 8

special effects such as underline, superscript, and strikethrough. The documentation

scripts do not override any user modified fonts or special effects; however, they can

override color, styling, and font size if the font is Times New Roman (they only control

the styling of text in Times New Roman). Consequently, in order to produce professional

looking documents, care should be taken when capturing external source material.

Specifically, when using the Element Extractor window, either turn off the Maintain

Formatting option or pre-process the document to convert all text to Times New Roman

(i.e., open the document in a word processor, select all contents of the document, and

select Times New Roman as the font). Similarly, when using cut & paste, either pre-

process the document to set the font to Times New Roman or use Paste Unformatted

rather than the Paste command. Since they should not be modified on output, formulas

should be captured in another font, such as Arial. Also, note that text attributes do not

support embedded tables and graphics. Therefore, tables and graphics should be

captured as ExternalFile elements.

1.3 Identify Organizations

Based on the source documents, identify the organizations that are key players in the

architecture using elements in the Organization class. Capture the command structure

as well as the coordination relationships among these organizations.

Figure 5 Organizations

CORE 8 Architecture Definition Guide

9

Table 3 Organizations

Element Class Attributes Relationships Target Classes

Organization Abbreviation

Description

Latitude

Location

Longitude

Number

Role

coordinated with/

coordinates with

Organization

coordinates with/

coordinated with

Organization

included in/ includes Organization

includes/ included in Organization

responsible for /

assigned to

Architecture

OperationalActivity

Mission

ProgramActivity

ProgramElement

Risk

1.4 Define Operational Boundary

Based on an examination of the source, identify the operational boundary and context.

To define the boundary, identify each operational external with which the architecture

must interface. An operational external is represented as a Performer and may identify

the operational environment. Create a Performer element representing the context and

decompose it into the operational architecture and its externals using the built from

relationship. Set the Type attribute for each Performer.

To complete the operational boundary definition, identify all the information exchanges

between the architecture’s performers and each external by creating elements of the

Needline class. Defining a Needline element establishes that the architecture interacts

with an external. Typically, there will be only one Needline between the architecture’s

performers and each external.

CORE 8 Architecture Definition Guide

 10

Figure 6 Operational Boundary

Table 4 Operational Boundary

Element Class Attributes Relationships Target Classes

Performer

(Type: Context)

Description

Number

Type: Context

built from / built in Performer

(Type: Operational

Architecture and

External)

Performer

(Type: External)

Abbreviation

Description

Doc. PUID

Number

Purpose

Type: External

built in / built from Performer

(Type: Context)

connected to / connects

to

Needline

Performer

(Type: Operational

Architecture)

See Section 1.1 built in / built from Performer

(Type: Context)

connected to / connects

to

Needline

Needline Description

Doc. PUID

Number

connects to / connected

to

Component

(Type: External and

Operational

Architecture)

CORE 8 Architecture Definition Guide

11

Suggestion: Create a folder for the context and externals in order to separate them from

the evolving performer hierarchy. Typically, the context and externals are given a

different numbering scheme than the elements in the performer hierarchy in order to

differentiate them in CORE views such as the Physical Block Diagram and Hierarchy

diagrams.

CORE 8 Architecture Definition Guide

 12

THIS PAGE INTENTIONALLY BLANK

CORE 8 Architecture Definition Guide

13

2 OPERATIONAL ACTIVITY ANALYSIS

Given the need to satisfy the operational mission(s) within the context of the CONOPS and/or the

operational requirements document, the systems engineering/architecture team must derive the

necessary operational behavior for the operational architecture to accomplish the mission or missions.

This is essentially a discovery process, working with operational activities to derive, define, or capture

key capabilities. Finalized capabilities are integrated to become the integrated behavioral model for

the architecture.

2.1 Operational Activity Model

Capabilities13 form the foundation of an operational architecture. A capability is defined

as:

The ability to achieve a Desired Effect under specified [performance]

standards and conditions through combinations of ways and means

[activities and resources] to perform a set of activities.

Capabilities14, in general, are the starting point for defining operational scenarios. These

scenarios consist of a sequence of operational activities needed to respond to an

external stimulus or to provide an external stimulus. Capabilities are the basis of

OperationalActivities and are executable behavior entities. Each activity is performed by

an element in the Performer class and the relationship attribute Behavior Type is set to

“Capability”. The integrated operational behavior is developed from integrating two or

more capabilities into a single behavior model that fully represents the behavior

required by a Performer. The relationship Behavior Type attribute for integrated

behavior is set to “Integrated (Root)”. Traceability between capabilities and the

integrated operational behavior model is established through the basis of relationship.

Logical groupings (taxonomy) of capabilities may be established through the

categorized by relationship with elements within the class Category.

The context-level OperationalActivity is performed by the context-level Performer (of

Type Context) with the relationship attribute Behavior Type is set to “Integrated (Root).”

OperationalActivity Inputs and Outputs. Each OperationalActivity within a capability

or integrated behavior will have input and output OperationalItem elements identified.

These OperationalItem elements are associated with OperationalActivities using the

13

 The usage of the term capability is as described in the DoD Architecture Framework, Version 2.0, 28 May 2009. In DoD
oriented models, capabilities refer to operationally oriented scenarios and threads refer to system-oriented scenarios.

14
 There may be one or more capability requirements establishing the programmatic need and timeframe when the capability is

needed. Capability Requirements are captured in the Requirement class of Type: Capability.

CORE 8 Architecture Definition Guide

 14

relationships: input to/inputs, output from/outputs, and triggers/triggered by. As with

OperationalActivities, OperationalItems should be aggregated to simplify presentation.

OperationalActivity Assignment. In conjunction with Operational Architecture
Synthesis (See Section 3.1), for each layer of Performers, OperationalActivities in the
integrated behavior are decomposed until they can be uniquely assigned to the next
level of Performer using the performed by relationship. This not only establishes the
organization or role that performs the activity, it allows the systems
engineering/architecture team to assess the impact of Performer losses or failures on
both Mission and OperationalActivities, thereby, making it easier for the systems
engineering/architecture team to design countermeasures to mitigate operational
impacts of Performer loss or failure.

OperationalActivity Traceability. OperationalActivity traceability from an appropriate
Mission element (or OperationalTask if required) is established using the achieves
relationship. Establishing this relationship enables one to easily assess what capabilities
and behavior are impacted by a Mission change, as well as answering the converse
question of what Missions are impacted by a capability change or failure.

OperationalActivity traceability from an appropriate Requirement occurs in two senses.
These relationships are the specified by and the based on relationships. The specified by
relationship identifies constraint or performance requirements that the
OperationalActivity must satisfy. The based on relationship is used for all other
requirements that apply to the OperationalActivity.

Note: When doing behavior modeling, a root OperationalActivity can be established for
any Performer and the behavior diagram built using the assigned OperationalActivities
to define the full behavior of the Performer from the Performer's perspective rather
than from the operational architecture’s perspective. These lower-level root
OperationalActivities do not appear in the operational activity hierarchy, but act as tap
points into the hierarchy.

CORE 8 Architecture Definition Guide

15

Figure 7 Operational Activity Model

Table 5 Operational Activity Model

Element Class Attributes Relationships Target Classes

Capability See Section 1.2 based on / basis of OperationalActivity

Mission See Section 1.2 achieved by / achieves OperationalActivity

Performer

(Type: Operational

Architecture)

See Section 1.1 performs /

performed by

(Behavior Type:

Capability or

Integrated (Root))7

OperationalActivity

OperationalActivity Description

Doc. PUID

Duration

Number

achieves / achieved by Mission

OperationalTask

based on / basis of Requirement

basis of / based on OperationalActivity

based on / basis of OperationalActivity

based on / basis of Capability

decomposed by /

decomposes

OperationalActivity

decomposes /

decomposed by

OperationalActivity

CORE 8 Architecture Definition Guide

 16

Table 5 Operational Activity Model

Element Class Attributes Relationships Target Classes

elaborates /elaborated

by

UseCase

inputs / input to OperationalItem

outputs / output from OperationalItem

performed by /

performs

(Behavior Type:

Capability or

Integrated (Root))15

Performer

results in/ result of Capability

results in /result of Requirement

specified by / specifies Requirement

triggered by / triggers OperationalItem

OperationalItem Accuracy

Description

Doc. PUID

Number

Timeliness

decomposed by /

decomposes

OperationalItem

decomposes /

decomposed by

OperationalItem

input to / inputs OperationalActivity

output from / outputs OperationalActivity

specified by / specifies Requirement

triggers / triggered by OperationalActivity

OperationalTask See Section 1.2 achieved by / achieves OperationalActivity

Requirement See Sections 1.2 basis of / based on OperationalActivity

specifies /specified by OperationalActivity

OperationalItem

UseCase Alternate Flow

Description

Number

describes /

described by

Performer

elaborated by /

elaborates

OperationalActivity

15

 A Performer could have multiple OperationalActivities of Behavior Type "Capability" but should have only one
OperationalActivity of Behavior Type "Integrated (Root)."

CORE 8 Architecture Definition Guide

17

Table 5 Operational Activity Model

Element Class Attributes Relationships Target Classes

Preconditions

Primary Flow

Postconditions

extended by / extends UseCase

extends / extended by UseCase

generalization of /

kind of

UseCase

kind of /

generalization of

UseCase

included in / includes UseCase

includes / included in UseCase

involves /

participates in

Performer

specified by / specifies Requirement

CORE 8 Architecture Definition Guide

 18

THIS PAGE INTENTIONALLY BLANK

CORE 8 Architecture Definition Guide

19

3 OPERATIONAL ARCHITECTURE SYNTHESIS

3.1 Assign OperationalActivities to Next Level of Performers

In conjunction with the analysis of the CONOPS document, OperationalActivity as well

as Performer decomposition occurs as part of the process to refine the operational

architecture. This hierarchical decomposition process results in more specificity

regarding subordinate Performers and the behavior that is required of them.

As the Performer hierarchy evolves, Performers uniquely perform more refined

OperationalActivities. This is accomplished in layers. When a decomposed root or

capability OperationalActivity is performed by a Performer, all lower-level

OperationalActivities in its decomposition are part of the behavior of the Performer.

The Performer may be correspondingly decomposed, in which case even lower-level

OperationalActivities are performed by the lower-level Performers. These lower-level

assignments are termed Atomic. Since OperationalActivities can be aggregated to

enhance understanding, there is not necessarily a one-to-one correspondence between

levels in the OperationalActivity hierarchy and levels in the Performer hierarchy.

Performers are mapped to Organizations using the assigned to relationship16. With all

the previous relationships established as described in Section 2.1 for each layer of

Performer decomposition, then it is possible, through tracing the appropriate

relationships, to identify what capabilities and integrated behavior the Organization is

responsible for as well as any subordinate Missions, if they were defined.

Note: As stated in Section 2.1, when doing behavior modeling, a root

OperationalActivity can be established for any Performer and the behavior diagram

built using the atomic OperationalActivities to define the full behavior of the Performer

from the Performer’s perspective rather than from the architecture’s perspective.

16

 Organizations, organizational units, roles, etc. are represented as Organizations elements with a parent-child relationship
reflecting command structure. They are also represented as Performers in which case hierarchically related units are often
peers because of the OperationalActivities that they perform and the communication need between them.

CORE 8 Architecture Definition Guide

 20

Figure 8 Performer Hierarchy and OperationalActivity Assignment

Table 6 Performer Hierarchy and OperationalActivity Assignment

Element Class Attributes Relationships Target Classes

Performer Abbreviation

Description

Doc. PUID

Latitude

Location

Longitude

Purpose

Number

Type

assigned to /

responsible for

Organization

built from / built in Performer

built in / built from Performer

performs /

performed by

OperationalActivity

OperationalActivity See Section 2.1 performed by /

performs

Performer

Organization See Section 1.3 responsible for /

assigned to

Performer

3.2 Refine External Needline Definitions

An external Needline element identifies the fact that the operational architecture

communicates in some manner with an external Performer (See Section 1.4)17. As the

Performer hierarchy evolves, the terminus point for Needline is appropriately changed

to lower-level Performers when the Performers that provide the OperationalItem,

17

 If the external Performer is a threat source, then the communication element offered by the threat source is some
observable that an OperationalActivity within the Architecture can recognize. Including externals such as a threat source
allows the engineering team to better analyze and specify the architecture.

CORE 8 Architecture Definition Guide

21

transferred by the Needlines, are determined by OperationalActivity assignment. When

the target of a connects to relationship is changed from a Performer to one of its

subordinates, CORE automatically establishes the connected thru relationship between

the Needline and the parent of the subordinate Performer. This allows Needlines to

retain their identity even though their end points may change as the Performer

hierarchy grows in depth.

Needlines may be specified by performance and constraint Requirements. Only the

lowest layer of OperationalItem should be transferred by a Needline.

Figure 9 External Needline Definition

CORE 8 Architecture Definition Guide

 22

Table 7 External Needline Definition

Element Class Attributes Relationships Target Classes

Needline Description

Doc. PUID

Number

connects thru /

connected thru18

Performer

connects to /

connected to

Performer

transfers /

transferred by

OperationalItem

OperationalItem See Section 2.1 transferred by /

transfers

Needline

Performer See Section 3.1 connected thru /

connects thru19

Needline

connected to /

connects to

Needline

3.2.1 Derive or Refine Internal Needlines

Within the Performer hierarchy, the assignment of OperationalActivities to Performers

establishes the internal Needlines of the Architecture based on the OperationalItems

that flow between the assigned OperationalActivities. The internal Needlines are

formalized in the database using the Needline element class.

As the Performer hierarchy evolves further, the terminus point for Needlines are

appropriately changed to lower-level Performers where the OperationalActivities

performed by that Performer provide the OperationalItems transferred by the

Needlines. When the target of a connects to relationship is changed from the Performer

to one of its subordinates, CORE automatically establishes the connected thru

relationship between the Needline and the parent of the subordinate Performer. This

allows Needlines to retain their identity even though their end points may change as the

Performer hierarchy grows in depth.

Needlines may be specified by performance and constraint Requirements. Only the

lowest layer of OperationalItem should be transferred by a Needline.

18

 Automatically set based on the operational node hierarchy and connects to targets.
19

 Automatically set based on the operational node hierarchy and connected to targets.

CORE 8 Architecture Definition Guide

23

Figure 10 Internal Needline Definition

CORE 8 Architecture Definition Guide

 24

Table 8 Internal Needline Definition

Element Class Attributes Relationships Target Classes

Needline See Section 3.2.1 connects thru /

connected thru20

Performer

connects to /

connected to

Performer

transfers /

transferred by

OperationalItem

specified by /

specifies

Requirement

OperationalItem See Section 2.1 transferred by /

transfers

Needline

specified by /

specifies

Requirement

Performer See Section 3.1 connected thru /

connects thru21

Needline

connected to /

connects to

Needline

Requirement See Section 1.2 specifies /

specified by

Needline

OperationalItem

20

 Automatically set based on the operational node hierarchy and connects to targets.
21

 Automatically set based on the component hierarchy and connected to targets.

CORE 8 Architecture Definition Guide

25

4 OPERATIONAL MODEL VALIDATION USING COREsim

COREsim is a discrete event simulator that executes the operational activity and

needline models to provide an assessment of operational architecture performance and

to verify the dynamic integrity of the conceptual model. COREsim dynamically interprets

a behavior model (i.e., the Enhanced Functional Flow Block Diagram (EFFBD)) in

conjunction with the needline model and identifies and displays timing, resource

utilization, operational item flow, and model inconsistencies. COREsim usage should be

an integral part of operational analysis and operational architecture synthesis.

CORE 8 Architecture Definition Guide

 26

THIS PAGE INTENTIONALLY BLANK

CORE 8 Architecture Definition Guide

27

5 OPERATIONAL ARCHITECTURE CONSIDERATIONS

Definition of the systems architecture should be done consistently with the structured approach

documented in the SDG. Although the systems architecture may involve numerous systems, the SDG

principles remain unchanged. Systems engineering/architecture activities needed to complete the

architecture and to interrelate the operational and systems domains are addressed in the following

sections.

5.1 Systems Requirements

Elements in the Requirements class are used to capture performance parameters for

system elements. Requirements with the Type attribute set to Performance include

both current values for existing elements and threshold and objective values per time

frame for existing or new elements.

Figure 11 Requirements

CORE 8 Architecture Definition Guide

 28

Table 9 Performance Parameters

Element Class Attributes Relationships Target Classes

Component See SDG specified by /

specifies

Requirement

Function See SDG based on / basis of Requirement

Interface See SDG specified by /

specifies

Requirement

Link See SDG specified by /

specifies

Requirement

Requirement See Section 1.2 exhibited by /

exhibits

Component

Interface

Link

basis of / based on Function

5.2 Services Development

Services exist as both a subset of functional behavior and as part of a system. Within the

functional behavior model [in the Function class], all leaf-level elements that compose

the functionality of a service are collected under a root Function via the decomposed by

relation.

Services are created as a Component element with the type attribute set to Service. The

Service Type attribute should be set to Consumer, Provider, or Both as appropriate. The

Component element performs the root Function, with the performs behavior type

attribute set to: Integrated (Services).

A service specification contains the attributes of a service to be included in the DoDAF

viewpoints for a net-centric environment or hybrid system. Service attributes for an

internal service [one which is being developed] are developed throughout the

operational and system analysis process and are documented in the

ServiceSpecification class. Service attributes for an external service [one which is an

external in the system context] are provided by the service provider. A Component of

type: Service is documented by a ServiceSpecification.

CORE 8 Architecture Definition Guide

29

Figure 12 Services

CORE 8 Architecture Definition Guide

 30

Table 10 Services

Element Class Attributes Relationships Target Classes

Component

See SDG built from/

built in

Component

(Type: Service)

Component

(Type: Service)

See SDG

Type: Service

joined to/joins Interface

performs /

performed by

(Behavior Type:

Integrated (Services)

Function

documented by/

documents

ServiceSpecification

Function See SDG performed by/

performs

(Behavior Type:

Integrated (Services)

Component

Link See SDG connected to /connects

to

Component

ServiceSpecification Access Criteria

Authentication

Mechanism

Data Types

Effects

Information Security

Markings

Overview

Point Of Contact

SAP Type

Service Access Point

Service Version

WDSL

documents /

documented by

Component

(Type: Service)

CORE 8 Architecture Definition Guide

31

5.3 Requirements Development

OperationalActivities serve as sources for system Requirements. OperationalActivities

lead to the identification and definition of functional Requirements. The results in /

result of relationships are used to map elements in this class. Thus, a Requirement is the

result of an OperationalActivity. See the SDG for a description and use of Requirement

attributes.

Figure 13 Requirements Development

Table 11 Requirements Development

Element Class Attributes Relationships Target Classes

OperationalActivity See Section 2.1 results in / result of Requirement

Requirement Description

Doc. PUID

Key Performance

Parameter

Number

Origin:

Originating

Rationale

Type

Units

Value

Weight Factor

result of / results in OperationalActivity

CORE 8 Architecture Definition Guide

 32

5.4 Traceability from Operational Architecture

The implemented by / implements relationships map the operational behavior and

performers to the system behavioral and physical elements. These relationship pairs

enable full traceability from the operational domain into either the system’s physical

domain, functional domain or both and, therefore, make it easier for the systems

engineering team to assess the impacts in the system domain when changes occur

within the operational domain. Conversely, the reverse mapping of the system domain

into the performers, operational behavior, or both again makes it easier for the systems

engineering/architecture team to assess the impacts within the operational domain

when changes occur in the systems domain. See the SDG regarding Component,

Function, Item, and Link.

Figure 14 Operational to Systems Traceability

CORE 8 Architecture Definition Guide

33

Table 12 Operational to Systems Traceability

Element Class Attributes Relationships Target Classes

Component See SDG implements /

implemented by

Performer

Function See SDG implements /

implemented by

(Status: nil,

Planned, Partial,

or Full)

OperationalActivity

Item See SDG implements /

implemented by

OperationalItem

Link See SDG implements /

implemented by

Needline

Needline See Section 3.2.1 implemented by /

implements

Link

OperationalActivity See Section 2.1 implemented by /

implements

(Status: nil,

Planned, Partial,

or Full)

Function

OperationalItem See Section 2.1 implemented by /

implements

Item

Performer See Section 1.4 implemented by /

implements

Component

CORE 8 Architecture Definition Guide

 34

THIS PAGE INTENTIONALLY BLANK

CORE 8 Architecture Definition Guide

35

6 PROGRAM MANAGEMENT ASPECTS

Managing architecture development and systems development within an MBSE environment should

conform to whether the programs or projects are top-down, bottom-up, or middle-out in nature. The

DoDAF-described Models within the Project Viewpoint describe how programs, projects, portfolios, or

initiatives deliver capabilities, the organizations contributing to them, and dependencies among them.

Previous versions of DoDAF took a traditional modeling approach of architecture in which descriptions

of programs and projects were considered outside DoDAF’s scope. To compensate for this, various

DoDAF views represented the evolution of systems, technologies and standards (e.g., Systems and

Services Evolution Description, Systems Technology Forecast, and Technical Standards Forecast),

which had a future programmatic cast. The integration of Project Viewpoints (organizational and

project-oriented) with the more traditional architecture representations characterizes DoDAF v2.0-

based enterprise architectural descriptions.

6.1 Program/Project Basics

Organizations and Architectures are related through the Program/Project Model to

relate the enterprise’s Goals with the Architecture and those Organizations involved.

The Program or Project model develops from the ProgramElement class. Each element

within the ProgramElement class represents some aspect of the structure of the

program or project. These elements are related through the included in / includes

relationship pair. When complete, the resulting hierarchical structure represents the

Work Breakdown Structure for the program or project. The Type attribute identifies

whether the program element instance is a Program, Project, Work Package or Task. The

top-most program element (Type: Program) implements an Architecture.22 Assigned to

each ProgramElement is an Organization, which is responsible for some aspect of the

program/project.

The top-most ProgramElement achieves one or more enterprise-level objectives, which

are represented as elements within the Requirements class with the Type attribute set

to Goal. Goals describe the desired effect (outcome) or achievement level in operational

processes, projects, or special programs. Goals may also express enterprise objectives—

high-level strategic objectives applying to the entire organization—or as more specific

operational objectives that define desired outcomes of the work process. Subordinate

goals may be achieved by lower-level ProgramElements (Type: Program or Project).

These Requirements of Type: Goal specify the affected elements in the aforementioned

classes. Program/Project risks are followed and managed through the Risk class.

Normally, a ProgramElement resolves a Risk by instituting strategies to mitigate the risk;

however, provision is made for those cases where a ProgramElement may in itself cause

22

 Enterprise architecture would cover multiple programs and each program may include multiple projects.

CORE 8 Architecture Definition Guide

 36

a Risk, which program managers must mitigate. The acquisition of Capabilities is

another important aspect of Program Management. A Capability is provided by a

ProgramElement, which implements an Architecture. Note: A Capability is the basis of

an OperationalActivity (see Section 2.1).

Figure 15 Program Management Basics

Table 13 Program Management Basics

Element Class Attributes Relationships Target Classes

Architecture See Section 1.1 implemented by /

implements

(Status: nil, Planned,

Partial, or Full)

ProgramElement

Capability See Section 1.2 provided by /

provides

ProgramElement

Organization See Section 1.3 responsible for /

assigned to

ProgramElement

ProgramElement Contract Number

Cost

Description

End Date

Labor Hours

Non-recurring Cost

accomplishes /

accomplished by

ProgramActivity

assigned to /

responsible for

Organization

augmented by /

augments

ExternalFile

CORE 8 Architecture Definition Guide

37

Table 13 Program Management Basics

Element Class Attributes Relationships Target Classes

Start Date

Type

causes / resolves Risk

implements /

implemented by

Architecture

included in /

includes

ProgramElement

includes /

included in

ProgramElement

provides / provided

by

Capability

resolves / causes Risk

specified by /

specifies

Requirement

supplies /

supplied by

Component

Performer

Requirement See Section 1.2 specifies /

specified by

ProgramElement

6.2 Program Management Activity Model

Another important facet of program management is developing and maintaining

program or project schedules, i.e., timelines. These timelines are established through

the ProgramActivity class. The ProgramActivity class allows the program management

team to establish the sequencing of work necessary to accomplish the Task, Work

Package, Project or Program of a ProgramElement.

The ProgramActivity behavior of a ProgramElement of Type: Project is the cumulative

behaviors of all subordinate ProgramElement behaviors. The intent of each

ProgramElement element is accomplished by a ProgramActivity and correspondingly,

the behavior of each ProgramActivity accomplishes the intent of its ProgramElement.

The integrated ProgramActivity behavior is developed from integrating subordinate

Task, Work Package or Project behaviors (workflows) into a single behavior model that

fully represents the workflow required by the parent ProgramActivity. COREsim (see

Section 4) will execute the program activity models to provide an assessment of the

timeline performance (schedule) and to verify the dynamic integrity of the conceptual

program management model. COREsim dynamically interprets a behavior model (i.e.,

CORE 8 Architecture Definition Guide

 38

the Enhanced Functional Flow Block Diagram (EFFBD)) and identifies and displays timing,

resource usage, product flow, and model inconsistencies.

ProgramActivity Inputs and Outputs. Each ProgramActivity’s integrated behavior will

have input and output Product elements identified. These Product elements are

associated with ProgramActivities using the relationships: input to/inputs, output

from/outputs, and triggers/triggered by. As with ProgramActivities, Products should be

aggregated to simplify presentation.

ProgramActivity Traceability. ProgramActivity traceability from an appropriate

Requirement element of Type: Goal is established using the based relationship. The

associated ProgramElement of the reference ProgramActivity is established through

the accomplishes relationship.

ProgramActivity traceability from an appropriate Capability occurs through the supplied

by relationships to an intermediary ProgramElement. The ProgramElement's basis of

relationship identifies the ProgramActivities that apply for accomplishing that

capability's objective or purpose.

Figure 16 Program Activity Model

CORE 8 Architecture Definition Guide

39

Table 14 Program Activity Model

Element Class Attributes Relationships Target Classes

Capability See Section 1.2 provided by /
provides

ProgramElement

Component See SDG supplied by /
supplies

ProgramElement

Performer See Section 1.1 supplied by /
supplies

ProgramElement

ProgramElement Contract Number

Cost

Description

End Date

Labor Hours

Non-recurring
Cost

Start Date

Type

accomplishes /
accomplished by

ProgramActivity

assigned to /
responsible for

Organization

augmented by /
augments

ExternalFile

causes / resolves Risk

implements /
implemented by

Architecture

included in /
includes

ProgramElement

includes /
included in

ProgramElement

provides /
provided by

Capability

resolves / causes Risk

specified by /
specifies

Requirement

supplies /
supplied by

Component

Performer

Product Description

Number

Size

Size Units

Type

augmented by /
augments

ExternalFile

decomposed by /
decomposes

Product

decomposes /
decomposed by

Product

documented by /
documents

Document

input to / inputs ProgramActivity

CORE 8 Architecture Definition Guide

 40

Table 14 Program Activity Model

Element Class Attributes Relationships Target Classes

output from /
outputs

ProgramActivity

specified by /
specifies

Requirement

triggers /
triggered by

ProgramActivity

CORE 8 Architecture Definition Guide

41

7 DOCUMENTATION—DoDAF v2.0 VIEWPOINTS

CORE includes a set of scripts to output each of the DoDAF v2.0 viewpoints as Rich Text

Format (RTF) documents. As appropriate to the particular viewpoint, each viewpoint

document contains a standard CORE diagram, a table generated from the contents of

the repository, or an external file referenced by an ExternalFile element. Because the

viewpoints are generated as a result of applying the model-based systems engineering

process to architecture definition, these scripts have been designed to be flexible in

order to support the architects/systems engineers developing the architecture on an on-

going basis and to produce the viewpoints for customer usage.

Table 15 DoDAF v2.0 Viewpoint Scripts

Viewpoint Viewpoint Title Script Output

AV-1 Overview and Summary

Information

User selected Architecture Description, Purpose, Scope,

Time Frame, achieves Mission name and Description,

and augmented by Text and ExternalFiles.

AV-2 Integrated Dictionary User selected Architecture.

CV-1 Vision User selected Architecture implemented by

ProgramElement which provides Capability.

CV-2 Capability Taxonomy User selected Architecture implemented by

ProgramElement which provides Capability and

Capability is refined by Capability.

CV-3 Capability Phasing User selected Architecture implemented by

ProgramElement, which supplies Capabilities determine

when projects providing elements of capability are to be

delivered, upgraded and/or withdrawn.

CV-4 Capability Dependencies Category categorizes Capability

CV-5 Capability to Organizational

Development Mapping

User selected Architecture specified by Capability

refined by Capability

CV-6 Capability to Operational

Activities Mapping

User selected Architecture specified by Capability refined

by Capability basis of OperationalActivity performed by

Performer

CV-7 Capability to Services

Mapping

Matrix mapping Capability to Performer of type Service

Functionality Provider

DIV-1 Conceptual Data Model Data elements used and their attributes and relations.

DIV-2 Logical Data Model Outputs characteristics of OperationalItems that are

output from, input to, or triggers a user selected

CORE 8 Architecture Definition Guide

 42

Table 15 DoDAF v2.0 Viewpoint Scripts

Viewpoint Viewpoint Title Script Output

OperationalActivity, its children, and, optionally, their

children.

DIV-3 Physical Data Model Outputs a user selected OperationalItem characteristics

table for OperationalItems related to a user selected

OperationalActivities, its children, and, optionally,

their children.

OV-1 High-Level Operational

Concept Graphic

User selected ExternalFile.

OV-2 Operational Resource Flow

Description

Physical Block Diagram (PBD) for user selected Performer.

OV-3 Operational Resource Flow

Matrix

Summary matrix or full matrix for information exchanges

of the children of OperationalActivity(s) performed by

Performers that compose the user selected

Architecture.

OV-4 Organization Relationships

Chart

Organization Hierarchy for the user selected

Organization.

OV-5a Operational Activity

Decomposition Tree

Functional Hierarchy for OperationalActivity(s)

performed by Performers that compose the user

selected Architecture.

OV-5b Operational Activity Model IDEF0 for user selected OperationalActivity and,

optionally, its children. Includes optional output of

Function Hierarchy for selected OperationalActivity.

Automatically outputs A-0 diagram for selected

OperationalActivity.

OV-6a Operational Rules Model EFFBD or Activity Diagrams for OperationalActivity(s)

performed by Performers that compose the user

selected Architecture.

OV-6b State Transition Description User selected ExternalFiles and State/Modes that are

exhibited by Performers that compose the user

selected Architecture.

OV-6c Event-Trace Description Sequence Diagrams for OperationalActivity(s) performed

by Performers that compose the user selected

Architecture.

PV-1 Project Portfolio

Relationships

Item characteristics table for OperationalItem linked to

user selected OperationalActivity, its children, and,

CORE 8 Architecture Definition Guide

43

Table 15 DoDAF v2.0 Viewpoint Scripts

Viewpoint Viewpoint Title Script Output

optionally, their children.

PV-2 Project Timelines User selected ExternalFile.

PV-3 Project to Capability Mapping User selected ProgramElements mapping to Capabilities.

SvcV-1 Services Context Description Interface Block Diagram for Component(s) type Service

that composes the user selected Architecture.

SvcV-2 Services Resource Flow

Description

Physical Block Diagram for Component(s) type Service

that composes the user selected Architecture.

SvcV-3a Systems-Services Matrix Matrix indentifying interfaces between children of

Component(s) type Service that composes the user

selected Architecture and Component(s) type System.

SvcV-3b Services-Services Matrix Matrix indentifying interfaces between children of

Component(s) type Service that composes the user

selected Architecture.

SvcV-4 Services Functionality

Description

IDEF0 diagrams for Function(s) performed by

Component(s) type Service that composes the user

selected Architecture.

SvcV-5 Operational Activity to

Services Traceability Matrix

Matrix mapping Functions performed by Component(s)

type Service that composes the user selected and their

associated Interfaces, Links, and Functions to

OperationalActivity(s).

SvcV-6 Services Resource Flow

Matrix

Summary matrix or full matrix for data exchanges of the

children of Component (s) type Service that composes

the user selected Architecture.

SvcV-7 Services Measures Matrix Quantitative characteristics for the children of

Component(s) type Service that composes the user

selected and their associated Interfaces, Links, and

Functions. Contains both the current Requirements as

well as the expected or required performance

parameters.

SvcV-8 Services Evolution

Description

User selected ExternalFile.

SvcV-9 Services Technology & Skills

Forecast

User selected ExternalFile.

SvcV-10a Services Rules Model EFFBD or Activity Diagram diagrams for Function(s)

CORE 8 Architecture Definition Guide

 44

Table 15 DoDAF v2.0 Viewpoint Scripts

Viewpoint Viewpoint Title Script Output

performed by Component(s) type Service that

composes the user selected Architecture.

SvcV-10b Services State Transition

Description

User selected ExternalFiles and State/Modes that are

exhibited by Component(s) type Service that composes

the user selected Architecture.

SvcV-10c Services Event-Trace

Description

Sequence Diagrams for Functions performed by

Component(s) type Service that composes the user

selected Architecture.

StdV-1 Standards Profile A listing of standards that apply to solution elements

along with the description of emerging standards and

potential impact on current solution elements, within a

set of time frames.

StdV-2 Standards Forecast See StdV-1

SV-1 Systems Interface Description Interface Block Diagram for Component(s) type System

that composes user selected Architecture.

SV-2 Systems Resource Flow

Description

Physical Block Diagram for Component(s) type System

that composes user selected Architecture.

SV-3 Systems-Systems Matrix Matrix indentifying interfaces between children of

Component(s) type System that composes the user

selected Architecture.

SV-4 Systems Functionality

Description

IDEF0 diagrams for Function(s) performed by

Component(s) type System that composes the user

selected Architecture.

SV-5a Operational Activity to

Systems Function

Traceability Matrix

Matrix mapping Functions performed by Component(s)

type System that composes the user selected

Architecture and their associated

OperationalActivity(s).

SV-5b Operational Activity to

Systems Traceability Matrix

Matrix mapping Component(s) type System that

composes the user selected Architecture and their

associated OperationalActivity(s).

SV-6 Systems Resource Flow

Matrix

Summary matrix or full matrix for data exchanges of the

children of Component(s) type System that composes

the user selected Architecture.

SV-7 Systems Measures Matrix Quantitative characteristics for the children of the user

CORE 8 Architecture Definition Guide

45

Table 15 DoDAF v2.0 Viewpoint Scripts

Viewpoint Viewpoint Title Script Output

selected Component and their associated Interfaces,

Links, and Functions. Contains both the current

performance characteristics as well as the expected or

required performance parameters.

SV-8 Systems Evolution

Description

User selected ExternalFile.

SV-9 Systems Technology & Skills

Forecast

User selected ExternalFile.

SV-10a Systems Rules Model EFFBD or Activity diagrams for Function(s) performed by

Components(s) type System that composes the user

selected Architecture.

SV-10b Systems State Transition

Description

User selected ExternalFiles and State/Modes that are

exhibited by Component(s) type System that composes

the user selected Architecture.

SV-10c Systems Event-Trace

Description

Sequence Diagrams for Fucntion(s) performed by

Component(s) type System that composes the user

selected Architecture.

In addition to the DoDAF viewpoint scripts, CORE provides numerous engineering

support scripts such as the Generic Table Output, Indented Hierarchy Reports, Element

Definition, HTML Report, et al. These should be used on an on-going basis to aid the

systems engineers in communication and assessment of the architecture definition.

CORE 8 Architecture Definition Guide

 46

THIS PAGE INTENTIONALLY BLANK

Vitech Corporation

2270 Kraft Drive, Suite 1600
Blacksburg, Virginia 24060

540.951.3322 FAX: 540.951.8222
Customer Support: support@vitechcorp.com

www.vitechcorp.com/

mailto:support@vitechcorp.com
http://www.vitechcorp.com/

