
VITECH CORPORATION
Product and Process Engineering Solutions

CORE API®

Release

V I T E C H C O R P O R A T I O N

CORE API Reference
V e r s i o n 1 . 0

2 9 A u g u s t , 2 0 0 0

Copyright © 1998-2001 Vitech Corporation. All rights reserved.

No part of this document may be reproduced in any form, including, but not limited to,
photocopying, translating into another language, or storage in a data retrieval system,
without prior written consent of Vitech Corporation.

Restricted Rights LegendRestricted Rights LegendRestricted Rights LegendRestricted Rights Legend

Use, duplication, or disclosure by the Government are subject to restrictions as set forth
in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.277-7013.

Vitech CorporationVitech CorporationVitech CorporationVitech Corporation

2070 Chain Bridge Road, Suite 320

Vienna, Virginia 22182-2536

(703) 883-2270 FAX: (703) 883-1860

Support E-mail: support@vtcorp.com

Web: http://www.vtcorp.com

CORE® is a registered trademark of Vitech Corporation.

Other product names mentioned herein are used for identification purposes only, and
may be trademarks of their respective companies.

 CORE API Reference

.

ii

Table Of Contents

1. INTRODUCTION.. 1
1.1 FUNCTIONAL OVERVIEW.. 1

1.1.1 API Server ... 1
1.1.2 Server Settings... 1
1.1.3 API Library ... 2

2. APPLICATION.. 2
2.1 CORE API OPERANDS STRUCTURE... 2

3. SESSION MANAGEMENT.. 4
3.1 LOGIN .. 4
3.2 LOGOUT ... 5
3.3 GET ENTITY NAME... 5
3.4 GET HANDLE AT INDEX ... 6
3.5 GET VALUE AT INDEX .. 7
3.6 GET HANDLES .. 8
3.7 SET TEXT RETURN FORMAT... 9
3.8 GET LAST API ERROR.. 9
3.9 GET LAST SESSION ERROR... 10
3.10 RELEASE HANDLES .. 11
3.11 RELEASE OPERAND NAMED ... 11

4. PROJECT MANAGEMENT .. 13
4.1 PROJECT NAME .. 13
4.2 PROJECTS ... 14
4.3 SELECT ACTIVE PROJECT ... 14
4.4 PROJECT RTF HEADER .. 15
4.5 DATABASE CLASSES .. 16
4.6 SCHEMA CLASSES .. 17

5. CATEGORY/FOLDER ... 17
5.1 ALL CATEGORY ELEMENTS.. 17
5.2 ALL PARENT CATEGORIES ... 18
5.3 ALL SUBCATEGORIES ... 19
5.4 CATEGORY ELEMENTS ... 20
5.5 CATEGORY NAME .. 21
5.6 NUMBER OF LOCAL CATEGORY ELEMENTS.. 22
5.7 CATEGORY PATH NAME... 23
5.8 ROOT CATEGORY ... 24
5.9 SUBCATEGORIES .. 25
5.10 TOTAL CATEGORY ELEMENTS.. 26

6. CLASS... 28
6.1 CLASS .. 28
6.2 ATTRIBUTE DEFINITION PROPERTY.. 29
6.3 CLASS ATTRIBUTES.. 29
6.4 CLASS NAME.. 30
6.5 CLASS PROPERTY... 31

 CORE API Reference

.

iii

6.6 CLASS RELATIONS ... 32
6.7 CLASS TARGET CLASSES.. 33

7. ELEMENT.. 35
7.1 ELEMENT ATTRIBUTE VALUE .. 35
7.2 ELEMENT CHILDREN .. 36
7.3 ELEMENT CLASS .. 37
7.4 ELEMENT NAME... 38
7.5 ELEMENT NUMBER... 39
7.6 ELEMENT PARENTS .. 40
7.7 ELEMENT RELATIONSHIPS.. 41
7.8 ELEMENT RELATIONSHIPS TARGET CLASS... 42
7.9 ELEMENTS.. 43
7.10 ELEMENT TARGETS .. 44
7.11 ELEMENT TARGETS TARGET CLASS ... 45
7.12 ELEMENT TARGETS TARGET CLASSES ... 46
7.13 RELATIONSHIPS.. 47

8. FACILITY .. 49
8.1 FACILITIES ... 49
8.2 FACILITY DATABASE CLASSES... 49
8.3 FACILITY NAME ... 50
8.4 FACILITYPROPERTY ... 51
8.5 FACILITY SCHEMA CLASSES... 52

9. RELATION .. 54
9.1 RELATIONS... 54
9.2 RELATION ATTRIBUTES.. 54
9.3 RELATIONNAME... 55
9.4 RELATION PROPERTY ... 56

10. RELATIONSHIP... 58
10.1 COMPLEMENT RELATIVE TO .. 58
10.2 DEFINITION RELATIVE TO.. 59
10.3 RELATIONSHIP ATTRIBUTE... 60
10.4 TRAVERSE.. 61

 CORE API Reference

.

1

1. INTRODUCTION
The CORE API is designed to provide application developers read access to CORE project,
schema and database information. The API makes available to the application developer the
same database information available via the COREscript language. The API is designed
around a message based client-server architecture. The client component is implemented in
C++ and provides an ANSI C interface. The server implements a communication layer on top
of existing CORE services.

1.1 Functional Overview

1.1.1 API Server
The CORE API server is designed to provide database services to some finite number of
client applications. Access to database services through the API is limited to valid CORE
users. The server uses the existing security services in CORE to enforce this protocol. Upon
completing the login process for a client application, the server establishes a session to
process the client's requests for service. This session maintains resources (object references)
on behalf of the client application. The resources allocated for the session are reclaimed by
the system in the event the client fails to maintain an active session. By an active session, we
mean that the client must submit transactions to the server in intervals not less than the
session time out period. The server administrator can set the session timeout period to
whatever value considered appropriate for his/her environment.

1.1.2 Server Settings
• Session Timeout

The session timeout defines the interval (in minutes) that the server will wait for a
request from a client application before it considers the session orphaned. If a client
application does not submit a request within the timeout period the server terminates the
session and logs a timeout.

• Maximum Sessions
The value of the maximum sessions setting defines the number of concurrent sessions
that the server will accept. Note that a client process can have multiple concurrent
sessions and that one client application could use up all the available sessions.

• Maximum Login Attempts
The maximum login attempts define the number of failed login attempts that the server
will record before login is disabled. The value of this setting is for the server as a whole
and in not on a per user basis. The effect of this is that a user may not be able to login
after a single failed attempt if that failed attempt brings the total number of failures above
the value of this setting.

• Logging Level
The logging level setting determines the parts of a transaction that are logged. At the
lowest level, the default, only session startups and termination are logged. At the highest

 CORE API Reference

.

2

level, every part of a transaction is logged; the contents of the client’s request, the
server’s response and session information.

• Error Log
The error log specifies the file to which server side errors are written

• Transaction Log
The transaction log specifies the file in which server records client transactions.

• Login Port
The login port is the port through which client applications log into the API server. The
login port number cannot be changed dynamically. Should there be a need to change the
login port, the server must be shutdown and started on a new port number.

• First Data Port
As currently configured, the API server requires a contiguous range of data port numbers.
The first data port is the first port number that the server will assign to a client application
for submitting data requests.

• Last Data Port
The last data port is the last port number that the server can assign to a client application
for submitting data requests.

1.1.3 API Library
The API Library provides an ANSI C interface to the client application and relays the client's
request to the server using a messaging protocol with transport provided by TCP sockets. The
library provides the client process a facility to establish any number of sessions with the API
server. The library manages the sessions for the client. As part of this session management,
the library allocates memory for result sets that are returned in response to a client
application’s requests. The library maintains a list of allocated memory and provides a
facility to return the allocated memory to the system. However, it is incumbent on the
application developer to use this facility to reduce the memory load of his/her executing
application. To establish a session with the API server, a client application submits a login
request to the server on a dedicated login channel. The login channel port number may be
available from the server administrator or from the API Monitor server settings pane. The
result of a successful login request is a session ID to which the client application can connect
to submit requests for database services.

2. APPLICATION

2.1 CORE API Operands Structure
The CoreApiOperands provides a structure to encapsulate data transfers between the API
library and a client application. This structure provides a mechanism through which a client
application can make an API call that results in arbitrary size result sets. When used as an output
parameter, the client application creates an instance of a CoreApiOperands and passes it as an
argument in a function call to the API library. The API library assigns the size of the result set
to the handleCount member. The API library allocates a block of memory into which it loads the
object handles and assigns the base address of the memory block to the handles pointer. When

 CORE API Reference

.

3

used as an input parameter, the client application creates an instance and assigns the address of
an array of handles to the handles member and the number of handles to the handleCount
member.
struct CoreApiOperands

{

 short handleCount;
 ULONG *handles;
};

• handleCount - Specifies the number of handles in the handles array.
• handles - Pointer to an array of object handles.

 CORE API Reference

.

4

3. SESSION MANAGEMENT

3.1 Login
The Login function creates a session for a client application and returns the handle to the
session.
VTAPIRSLT Login (

LPSTR userName,
LPSTR password,
LPSTR hostIpAddress,
UINT loginPort,
LPVTSHND sessionHandle

);

Parameters
userName

A CORE account user name.
password

A CORE account user password.
hostIpAddress

The IP address of the machine on which the CORE API Server is running.
loginPort

The port number on which the API server is listening for logins. The login port number can
be obtained from the server administrator or from the server settings pane on the API
Monitor.

sessionHandle
Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

Return Values
If the function succeeds the return value is zero, and the <session handle> contains the handle to the
session created on the server on behalf of the client. A non-zero return code is an indication that the
function failed. To get extended error information call the GetLastApiError function. This is an
application level call and it returns error information on the last application level function call. The
following errors apply to this function:

• LOGIN_ACCESS_DENIED The user does not have access to the CORE database.

• LOGIN_DISABLED The server has disabled logins.

• API_COMMUNICATION_ERROR Network error on client machine or server is not running.

• API_CONNECT_FAIL Network error on client machine or server is not running.

 CORE API Reference

.

5

Remarks
The function call fails if any of the input parameters is NULL. The call also fails if login is disabled on
the server, or if all available port numbers are in use.

3.2 Logout
The Logout function terminates the session specified by the <session handle>. The Logout call
will release all client side and server side resources maintained for the session.
VTAPIRSLT Logout (

VTSHND sessionHandle
);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

Return Values
If the function succeeds the return value is zero. A non-zero return code is an indication that the function
failed. Whether the return code of this call indicates success or failure, once the Logout call is issued,
references to any handles associated with the logged out session is unpredictable. To get extended error
information call the GetLastApiError function. The following errors apply to this function:

• INVALID_SESSION_HANDLE The session handle argument is not defined in the session table.

• LOGOUT_FAILURE The server was unable to complete the logout process.

Remarks
The function call fails if the <session handle> in invalid. This would be the case if the client issues the
Logout call with a handle other than a session handle obtained from the login process. If the function
returns with an INVALID_SESSION_HANDLE error code, then the session has not been terminated, and
the client can continue to make references to handles retrieved in the context of that session. However,
references to API handles after this call is not recommended since it may result in unpredicatible
behavior.

3.3 Get Entity Name
The GetEntityName function returns the name of a CORE entity specified by the <entity
handle> argument. The client application has to preallocate a sufficiently large buffer to
accommodate the name of the entity. If however the name requires more space than has been
allocated, the function will return that part of the name that can fit in the allocated buffer.

VTAPIRSLT GetEntityName (
VTSHND sessionHandle,
VTOHND entityHandle,
LPSTR entityNameBuffer,

 CORE API Reference

.

6

SHORT bufferSize
);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

entityHandle
Handle to any CORE entity (element, facility, category, etc.)
entityNameBuffer

The <entity name buffer> argument is a pointer to a C string buffer allocated by the client
application to receive the name of the entity. This buffer should be large enough to hold the
largest entity name expected otherwise long names are be truncated.

bufferSize
The <buffer size> contains the size of the <entity name buffer>.

Return Values
If the function succeeds the return value is the number of bytes copied into the <entity name
buffer>. The function call fails with a return value of zero indicating that no information was
copied into the <entity name buffer>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target entity.

• DEFUNCT_OPERAND The entity specified by the <entity handle> argument has been deleted.

Remarks
The function fails if either the <session handle> or the <entity handle> is invalid.

3.4 Get Handle At Index
The GetHandleAtIndex function returns the handle specified by the <index> within the handles
array. This is a utility function to provide access to client environments that do not support C
style pointers, e.g. Visual Basic. The client application can use this call to retrieve a handle from
the collection of handles resulting from other API calls.
long GetHandleAtIndex (

VTSHND sessionHandle,
CoreApiOperands *handles,
SHORT index

);

Parameters
sessionHandle

 CORE API Reference

.

7

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

handles
A pointer to an array of handles

index
The <index> argument is the position of the handle within the handles array.

Return Values
If the function succeeds the return value is the handle of the object at the index position within
the handles array.
Remarks
The function fails if either the <session handle> or the <entity handle> is invalid.

3.5 Get Value at Index
The GetValueAtIndex function returns the string representation of a return value specified by
the <index> within the handles array. This is a utility function to provide access to client
environments that do not support C style pointers, e.g. Visual Basic.
long GetValueAtIndex (

VTSHND sessionHandle,
CoreApiOperands *handles,
SHORT index,
LPSTR buffer,
SHORT bufferSize

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

handles
A pointer to an array of handles

index
The <index> argument is the position of the value within the return array.

buffer

 CORE API Reference

.

8

The <buffer> argument is a string large enough to receive the value.
bufferSize

The <bufferSize> argument determines the maximum number of characters that will be
copied into the buffer.

Return Values
If the function succeeds the return value is the number of bytes copied into the string buffer.
Remarks
The function fails if either the <session handle> or < handles > is invalid. The function will also
fail if the index is outside the range of the result set.

3.6 Get Handles
The GetHandles function provides a facility that allows a client application to make API calls
resulting in arbitrary size result sets. An application can check the handle count of the
CoreApiOperands structure and call the GetHandles function with an array large enough to hold
the result set. This function is useful in environments without support for variable size
collections.
VTAPIRSLT GetHandles (

VTSHND sessionHandle,
CoreApiOperands *coreApiOperands,
long handles[]

);

Parameters

sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

coreApiOperands
A pointer to a CoreApiOperands structure containing an array of object handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function allocates memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <handles> pointer.

handles
The handles parameter is an array large enough to hold the number of handles specified by
the coreApiOperands handle count member.

Return Values
If the function succeeds the return value is zero. A non-zero return code is an indication that the
function failed. To get extended error information, call GetLastSessionError with the <session
handle>.

 CORE API Reference

.

9

Remarks
The function fails if either the <session handle> or the <coreApiOperands> is invalid.

3.7 Set Text Return Format
The SetTextReturnFormat function sets the format in which string result sets are returned.
Once set, the format stays in effect until it is changed by another SetTextReturnFormat call
with a different format.
VTAPIRSLT SetTextReturnFormat (

VTSHND sessionHandle,
UINT textFormat

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client on the server. The server
creates a session on behalf of the client upon a successful login and returns the session handle
to the client. The session provides the context for the function call. The API supports
multiple sessions within a client process and the <session handle> provides the facility to
select the context in which function calls are executed.

textFormat
The text format parameter is an integer in the range <1..5> that specifies the desired format
for string results. The following formats are available:
1. ASCII
2. RTF – Includes the body of theRTF without header information. Takes on the project’s

font and color properties.
3. Fully Qualified RTF – Includes all formatting information required to render the result

set as RTF.
4. HTML - Includes the body of theRTF without header information. Takes on the project’s

font and color properties.
5. Fully Qualified HTML – Includes all formatting information required to render the text

as HTML.
Return Values
If the function succeeds the return value is zero. A non-zero return code is an indication that the
function failed. To get extended error information, call GetLastSessionError with the <session
handle>.
Remarks
The function fails if either the <session handle> invalid or the <textFormat> is out of range.

3.8 Get Last API Error
The GetLastApiError function returns the error description of the last application level API
error. This call is used before a session is established; for example, if the login call fails, the
client application calls this function to get error information on the login call.
VTAPIRSLT GetLastApiError (

LPSTR messageBuffer,

 CORE API Reference

.

10

SHORT bufferSize
);

Parameters
messageBuffer

The <message buffer> argument is a pointer to a C string buffer allocated by the client
application to receive the error description. The error description is truncated if the buffer is
not large enough to hold the string.

bufferSize
The <buffer size> argument is the size of the < message buffer>.

Return Values
The function returns the number of bytes copied into the <message buffer>. The function call
fails with a return value of zero indicating that no information was copied into the <message
buffer>.
Remarks

3.9 Get Last Session Error
The GetLastSessionError function returns the error description of the last error resulting from a
function call in the context of the session specified by the <session handle>.
VTAPIRSLT GetLastSessionError (

VTSHND sessionHandle,
LPSTR messageBuffer,
SHORT bufferSize

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client on the server. The server
creates a session on behalf of the client upon a successful login and returns the session handle
to the client. The session provides the context for the function call. The API supports
multiple sessions within a client process and the <session handle> provides the facility to
select the context in which function calls are executed.

messageBuffer
The <message buffer> argument is a pointer to a C string buffer allocated by the client
application to receive the error description. The error description is truncated if the buffer is
not large enough to hold the string.

bufferSize
The <buffer size> argument is the size of the < message buffer>.

Return Values
The function returns the number of bytes copied into the <message buffer>. The function call
fails with a return value of zero indicating that no information was copied into the <message
buffer>.
Remarks
The function call fails if the <session handle> is invalid.

 CORE API Reference

.

11

3.10 Release Handles
The ReleaseHandles function frees all resources allocated for the handles in the <handles >
argument. The memory allocated for the handles in the API library is freed and all object
references cached on the server are released.
VTAPIRSLT ReleaseHandles (

VTSHND sessionHandle,
CoreApiOperands *handles

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

handles
A pointer to a CoreApiOperands structure containing an array of object handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function allocates memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <handles> pointer.

Return Values
If the function succeeds the return value is zero. A non-zero return code is an indication that the
function failed. To get extended error information, call GetLastSessionError with the <session
handle>.
Remarks
The function fails if the <session handle> is invalid.

3.11 Release Operand Named
The ReleaseOperandNamed function frees the memory allocated for the operand (a CORE
entity) specified by the <operandName > argument. This is a local call and servers as a way for
the client application to deallocate resources that are no longer needed.
VTAPIRSLT ReleaseHandles (

VTSHND sessionHandle,
LPSTR *operandName

);

Parameters
sessionHandle

 CORE API Reference

.

12

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

operandName
The name of an entity received from any of the API function calls. When a client application
makes a call through the API library, the API library caches the return values. The client
application may release resources any time with this or the related call ReleaseHandles.

Return Values
If the function succeeds the return value is zero. A non-zero return code is an indication that the
function failed. To get extended error information, call GetLastSessionError with the <session
handle>.
Remarks
The function fails if the <session handle> is invalid.

 CORE API Reference

.

13

4. PROJECT MANAGEMENT

4.1 Project Name
The ProjectName function returns the name of the project specified by the <project handle>
argument.
VTAPIRSLT ProjectName (

VTSHND sessionHandle,
VTOHND projectHandle,
LPVTRSTR projectName

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

projectHandle
Handle to the project for which the name is desired. Project handles can be obtained through
the API Projects function.

projectName
The <project name> argument is a pointer to an address to which the element name is
assigned. The function allocates memory for the name of the element and returns the address
to the caller via the <project name>pointer.

Return Values
If the function succeeds the return value is zero, and the <project name> pointer contains the
address of the element name. A non-zero return code is an indication that the function failed. To
get extended error information, call GetLastSessionError with the <session handle>. The
following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_PROJECT_HANDLE The <element handle> argument is undefined or is NULL.

Remarks
The function fails if either the <session handle> or the <project handle> is invalid. The memory
for the project name is allocated from the heap. The client can release that memory with a call to
ReleaseHandles when the handles are no longer needed. If the client wishes to perform the
memory management then the client can call the related function GetEntityName with a buffer
large enough to accommodate the project name.

 CORE API Reference

.

14

4.2 Projects
The Projects function returns handles to all the projects in the CORE repository.
VTAPIRSLT Projects (

VTSHND sessionHandle,
CoreApiOperands *projecthandles

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

projectHandles
A pointer to a CoreApiOperands structure containing an array of project handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function allocates memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <project handles> pointer.

Return Values
If the function succeeds the return value is zero, and the <project handles> pointer has the
address of the structure containing the project handles. A non-zero return code is an indication
that the function failed. To get extended error information, call GetLastSessionError with the
<session handle>.
Remarks
The function fails if either the <session handle> or the <project handle> is invalid. The handles
are allocated from the heap. The client application can release the handles with a call to
ReleaseHandles when the handles are no longer needed.

4.3 Select Active Project
The SelectActiveProject function selects the project that becomes the context for all subsequent
API function calls in the session specified by <session handle>.
VTAPIRSLT SelectActiveProject (

VTSHND sessionHandle,
VTOHND projectHandle

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent

 CORE API Reference

.

15

function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

projectHandle
Handle to the CORE project that is to become the active project.

Return Values
If the function succeeds the return value is zero. A non-zero return code is an indication that the
function failed. To get extended error information, call GetLastSessionError with the <session
handle>.
Remarks
The function fails if either the <session handle> or the <project handle> is invalid.

4.4 Project RTF Header
The ProjectRTFHeader function returns a string that defines the RTF header for the selected
project. The RTF header includes a font and a color table. This includes information on all
formatted text in the project. When the text return format is set to RFT (using
SetTextReturnFormat) all attribute values are returned as RTF strings. The returned strings
contain references into the project RTF header font and/or color tables.
VTAPIRSLT ProjectRTFHeader (

VTSHND sessionHandle,
VTOHND projectHandle,
LPVTRSTR * rtfHeader

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

projectHandle
Handle to the project for which the RTF header is desired. Project handles can be obtained
through the Projects function.

rtfHeader
 The rtfHeader parameter is a pointer to a string with the address of the return RTF header.
Return Values
If the function succeeds the return value is zero, and the < rtfHeader > pointer contains the
address of the RTF header string. A non-zero return code is an indication that the function
failed. To get extended error information, call GetLastSessionError with the <session handle>.
The following errors apply to this function:

 CORE API Reference

.

16

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_PROJECT_HANDLE The <project handle> argument is undefined or is NULL.

Remarks
The function fails if either the <session handle> or the <project handle> is invalid.

4.5 Database Classes
The DatabaseClasses function returns handles to all concrete classes in the schema.
VTAPIRSLT DatabaseClasses (

VTSHND sessionHandle,
VTOHND projectHandle,
CoreApiOperands *classHandles

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

projectHandle
Handle to the project for which the name is desired. Project handles can be obtained through
the API Projects function.

classHandles
A pointer to a CoreApiOperands structure containing an array of class handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <class handles> pointer.

Return Values
If the function succeeds the return value is zero, and the <class handles> pointer has the address
of the structure containing the class handles. A non-zero return code is an indication that the
function failed. To get extended error information, call GetLastSessionError with the <session
handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_PROJECT_HANDLE The <project handle> argument is undefined or is NULL.

Remarks
The function fails if either the <session handle> or the <project handle> is invalid. The handles
are allocated from the heap. The client application can release the handles with a call to
ReleaseHandles when the handles are no longer needed.

 CORE API Reference

.

17

4.6 Schema Classes
The SchemaClasses function returns handles to all classes in the schema.
VTAPIRSLT SchemaClasses (

VTSHND sessionHandle,
CoreApiOperands *classHandles

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

classHandles
A pointer to a CoreApiOperands structure containing an array of class handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <class handles> pointer.

Return Values
If the function succeeds the return value is zero, and the <class handles> pointer has the address
of the structure containing the class handles. A non-zero return code is an indication that the
function failed. To get extended error information, call GetLastSessionError with the <session
handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

Remarks
The function fails if the <session handle> is invalid. The handles are allocated from the heap.
The client application can release the handles with a call to ReleaseHandles when the handles
are no longer needed.

5. CATEGORY/FOLDER
The notation of category has been replaced with folder beginning with release 3.0 of CORE.
Category or folder is a hierarchical grouping of CORE entities. All references to category in this
paragraph can be replaced with folder with no loss of meaning.

5.1 All Category Elements
The AllCategoryElements function returns handles to all the elements of the category specified
by the <category handle> argument and all its subcategories.
VTAPIRSLT AllCategoryElements (

VTSHND sessionHandle,
VTOHND categoryHandle,

 CORE API Reference

.

18

CoreApiOperands *handles
);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

categoryHandle
Handle to the category object that is the target of the request. Category handles can be
obtained through the RootCategory function.

handles
A pointer to a CoreApiOperands structure containing an array of element handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <handles> pointer.

Return Values
If the function succeeds the return value is zero, and the <handles> pointer has the address of the
structure containing the category element handles. A non-zero return code is an indication that
the function failed. To get extended error information, call GetLastSessionError with the
<session handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_CATEGORY_HANDLE The <category handle> argument is undefined or is NULL.

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target element.

• DEFUNCT_OPERAND The category specified by the <category handle> argument has been
deleted.

Remarks
The function fails if either the <session handle> or the <category handle> is invalid. The
handles are allocated from the heap. The client application can release the handles with a call to
ReleaseHandles when the handles are no longer needed.

5.2 All Parent Categories
The AllParentCategories function returns handles to all category elements above (ancestors of)
the category specified by the <category handle> argument. The return collection is ordered
hierarchically starting at the root category.
VTAPIRSLT AllParentCategories (

VTSHND sessionHandle,
VTOHND categoryHandle,

 CORE API Reference

.

19

CoreApiOperands *handles
);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

categoryHandle
Handle to the category object that is the target of the request. Category handles can be
obtained through the RootCategory function.

handles
A pointer to a CoreApiOperands structure containing an array of element handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <handles> pointer.

Return Values
If the function succeeds the return value is zero, and the <handles> pointer has the address of the
structure containing the category element handles. A non-zero return code is an indication that
the function failed. To get extended error information, call GetLastSessionError with the
<session handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_CATEGORY_HANDLE The <category handle> argument is undefined or is NULL.

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target element.

• DEFUNCT_OPERAND The category specified by the <category handle> argument has been
deleted.

Remarks
The function fails if either the <session handle> or the <category handle> is invalid. The
handles are allocated from the heap. The client application can release the handles with a call to
ReleaseHandles when the handles are no longer needed.

5.3 All Subcategories
The AllSubcategories function returns handles to all category elements below the category
specified by the <category handle> argument. The return collection is ordered according to the
depth of the category element in the hierarchy. Elements at the same level are ordered
alphabetically.
VTAPIRSLT AllSubcategories (

VTSHND sessionHandle,

 CORE API Reference

.

20

VTOHND categoryHandle,
CoreApiOperands *handles

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

categoryHandle
Handle to the category object that is the target of the request. Category handles can be
obtained through the RootCategory function.

handles
A pointer to a CoreApiOperands structure containing an array of element handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <handles> pointer.

Return Values
If the function succeeds the return value is zero, and the <handles> pointer has the address of the
structure containing the category element handles. A non-zero return code is an indication that
the function failed. To get extended error information call GetLastSessionError with the
<session handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_CATEGORY_HANDLE The <category handle> argument is undefined or is NULL.

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target element.

• DEFUNCT_OPERAND The category specified by the <category handle> argument has been
deleted.

Remarks
The function fails if either the <session handle> or the <category handle> is invalid. The
handles are allocated from the heap. The client application can release the handles with a call to
ReleaseHandles when the handles are no longer needed.

5.4 Category Elements
The CategoryElements function returns handles to the elements of the category specified by the
<category handle> argument.
VTAPIRSLT CategoryElements (

VTSHND sessionHandle,
VTOHND categoryHandle,
CoreApiOperands *handles

 CORE API Reference

.

21

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

categoryHandle
Handle to the category object that is the target of the request. Category handles can be
obtained through the RootCategory function.

handles
A pointer to a CoreApiOperands structure containing an array of element handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <handles> pointer.

Return Values
If the function succeeds the return value is zero, and the <handles> pointer has the address of the
structure containing the category element handles. A non-zero return code is an indication that
the function failed. To get extended error information, call GetLastSessionError with the
<session handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_CATEGORY_HANDLE The <category handle> argument is undefined or is NULL.

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target element.

• DEFUNCT_OPERAND The category specified by the <category handle> argument has been
deleted.

Remarks
The function fails if either the <session handle> or the <category handle> is invalid. The
handles are allocated from the heap. The client application can release the handles with a call to
ReleaseHandles when the handles are no longer needed.

5.5 Category Name
The CategoryName function returns the name of the category element specified by the
<category handle> argument.
VTAPIRSLT CategoryName (

VTSHND sessionHandle,
VTOHND categoryHandle,
LPVTRSTR categoryName

);

 CORE API Reference

.

22

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

categoryHandle
Handle to the category object that is the target of the request. Category handles can be
obtained through the RootCategory function.

categoryName
The <category name> argument is a pointer to the address to which the category element
name is assigned. The function allocates memory for the name of the category element and
returns the address to the caller via the <category name> pointer.

Return Values
If the function succeeds the return value is zero, and the <category name> pointer contains the
address of the category element name. A non-zero return code is an indication that the function
failed. To get extended error information, call GetLastSessionError with the <session handle>.
The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_CATEGORY_HANDLE The <category handle> argument is undefined or is NULL.

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target element.

• DEFUNCT_OPERAND The category specified by the <category handle> argument has been
deleted.

Remarks
The function fails if either the <session handle> or the <category handle> is invalid. The
memory for the category element name is allocated from the heap. The client can release that
memory with a call to ReleaseHandles when the handles are no longer needed. If the client
wishes to perform the memory management then the client can call the related function
GetEntityName with a buffer large enough to accommodate the category element name.

5.6 Number of Local Category Elements
The NumberOfLocalCategoryElements function returns the number of elements in the
category specified by the <category handle> argument.
VTAPIRSLT NumberOfLocalCategoryElements (

VTSHND sessionHandle,
VTOHND categoryHandle,
USHORT *numberOfElements

);

 CORE API Reference

.

23

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

 categoryHandle
Handle to the category object that is the target of the request. Category handles can be
obtained through the RootCategory function.

numberOfElements
 The parameter to which the resulting number of elements is assigned.

Return Values
If the function succeeds the return value is zero, and the <numberOfElements>. A non-zero
return code is an indication that the function failed. To get extended error information, call
GetLastSessionError with the <session handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_CATEGORY_HANDLE The <category handle> argument is undefined or is NULL.

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target element.

• DEFUNCT_OPERAND The category specified by the <category handle> argument has been
deleted.

Remarks
The function fails if either the <session handle> or the <category handle> is invalid.

5.7 Category Path Name
The CategoryPathName function returns the path name of the category element specified by the
<category handle> argument.
VTAPIRSLT CategoryPathName (

VTSHND sessionHandle,
VTOHND categoryHandle,
LPSTR pathName

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions

 CORE API Reference

.

24

within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

categoryHandle
Handle to the category object that is the target of the request. Category handles can be
obtained through the RootCategory function.

pathName
The <path name> argument is a pointer to an address to which the path name is assigned.
The function allocates memory for path name and returns the address to the caller via the
<path name>pointer.

Return Values
If the function succeeds the return value is zero, and the <path Name> pointer has the address of
the string containing the category path name. The path name is a string delimited with a single
slash of the names of all the ancestors of the category element specified by the <category
handle>. The names are concaternated in hierarchical order starting at the root category. A non-
zero return code is an indication that the function failed. To get extended error information, call
GetLastSessionError with the <session handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_CATEGORY_HANDLE The <category handle> argument is undefined or is NULL.

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target element.

• DEFUNCT_OPERAND The category specified by the <category handle> argument has been
deleted.

Remarks
The function fails if either the <session handle> or the <category handle> is invalid. The
handles are allocated from the heap. The client application can release the handles with a call to
ReleaseHandles when the handles are no longer needed.

5.8 Root Category
The RootCategory function returns the handle to the category root element specified by the
<class handle> argument.
VTAPIRSLT RootCategory (

VTSHND sessionHandle,
VTOHND classHandle,
CoreApiOperands *handle

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions

 CORE API Reference

.

25

within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

 classHandle
Handle to the class that is the target of the request.

handle
A pointer to a CoreApiOperands structure containing an array of element handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <handle> pointer.

Return Values
If the function succeeds the return value is zero, and the <handle> pointer has the address of the
structure containing the category element handle. A non-zero return code is an indication that
the function failed. To get extended error information, call GetLastSessionError with the
<session handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_CLASS_HANDLE The <class handle> argument is undefined or is NULL.

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target element.

• DEFUNCT_OPERAND The category specified by the <class handle> argument has been deleted.

Remarks
The function fails if either the <session handle> or the <class handle> is invalid. The handles
are allocated from the heap. The client application can release the handles with a call to
ReleaseHandles when the handles are no longer needed.

5.9 Subcategories
The Subcategories function returns handles to the category elements directly below the category
specified by the <category handle> argument.
VTAPIRSLT Subcategories (

VTSHND sessionHandle,
VTOHND categoryHandle,
CoreApiOperands *handles

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

categoryHandle

 CORE API Reference

.

26

Handle to the category object that is the target of the request. Category handles can be
obtained through the RootCategory function.

handles
A pointer to a CoreApiOperands structure containing an array of element handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <handles> pointer.

Return Values
If the function succeeds the return value is zero, and the <handles> pointer has the address of the
structure containing the category element handles. A non-zero return code is an indication that
the function failed. To get extended error information, call GetLastSessionError with the
<session handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_CATEGORY_HANDLE The <category handle> argument is undefined or is NULL.

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target element.

• DEFUNCT_OPERAND The category specified by the <category handle> argument has been
deleted.

Remarks
The function fails if either the <session handle> or the <category handle> is invalid. The
handles are allocated from the heap. The client application can release the handles with a call to
ReleaseHandles when the handles are no longer needed.

5.10 Total Category Elements
The TotalCategoryElements function returns the total number of elements in the hierarchy of
the category specified by the <category handle> argument.
VTAPIRSLT TotalCategoryElements (

VTSHND sessionHandle,
VTOHND categoryHandle,
USHORT *numberOfElements

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

 categoryHandle

 CORE API Reference

.

27

Handle to the category object that is the target of the request. Category handles can be
obtained through the RootCategory function.

numberOfElements
 A pointer to an unsigned short; receive the total number of elements in the result set.

Return Values
If the function succeeds the return value is zero, and the <numberOfElements>. A non-zero
return code is an indication that the function failed. To get extended error information, call
GetLastSessionError with the <session handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_CATEGORY_HANDLE The <category handle> argument is undefined or is NULL.

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target element.

• DEFUNCT_OPERAND The category specified by the <category handle> argument has been
deleted.

Remarks
The function fails if either the <session handle> or the category handle is invalid.

 CORE API Reference

.

28

6. CLASS

6.1 Class
The Class function returns the handle to the class specified by <class Name>.
VTAPIRSLT Class (

VTSHND sessionHandle,
LPSTR className,
CoreApiOperands *classHandle

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

className
 Name of the class for which the element definition is being requested.
classHandle

A pointer to a CoreApiOperands structure containing an array of class handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <class handle> pointer.

Return Values
If the function succeeds the return value is zero, and the <class handle> pointer has the address
of the structure containing the class handle. Note that the function returns a single class handle
and that the CoreApiOperands will contain a single value in the handles array. A non-zero return
code is an indication that the function failed. To get extended error information, call
GetLastSessionError with the <session handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target element.

• UNDEFINED_ELEMENT There is no class defined by the name in the <class name> argument.

Remarks
The function fails if either the <session handle> or the <class name> is invalid. The handles are
allocated from the heap. The client application can release the handles with a call to
ReleaseHandles when the handles are no longer needed.

 CORE API Reference

.

29

6.2 Attribute Definition Property
The AttributeDefinitionProperty function returns handles to all attribute definitions for the
attribute specified by the <attribute handle> argument and the property specified by the
<property Name> argument.
VTAPIRSLT AttributeDefinitionProperty (

VTSHND sessionHandle,
VTOHND attributeHandle,
LPSTR propertyName,
CoreApiOperands *handles

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

attributeHandle
A pointer to a CoreApiOperands structure containing an array of attribute handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <handles> pointer.

propertyName
 The name of the property for which the value is desired.
handles

A pointer to a CoreApiOperands structure containing an array of object handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function allocates memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <handles> pointer.

6.3 Class Attributes
The ClassAttributes function returns handles to all attribute definitions for the class specified by
the <class handle> argument.
VTAPIRSLT ClassAttributes (

VTSHND sessionHandle,
VTOHND classHandle,
CoreApiOperands *attributeHandles

);

Parameters
sessionHandle

 CORE API Reference

.

30

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

classHandle
Handle to the class that is the target of the request. Class handles can be obtained through any
of the following functions: Class, DatabaseClasses, or FacilityDatabaseClasses.

attributeHandles
A pointer to a CoreApiOperands structure containing an array of attribute handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <attribute handles> pointer.

Return Values
If the function succeeds the return value is zero, and the <attribute Handles> pointer has the
address of the structure containing the relationship handles. A non-zero return code is an
indication that the function failed. To get extended error information, call GetLastSessionError
with the <session handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_CLASS_HANDLE The <class handle> argument is undefined or is NULL.

Remarks
The function fails if either the <session handle> or the <class handle> is invalid. The handles
are allocated from the heap. The client application can release the handles with a call to
ReleaseHandles when the handles are no longer needed.

6.4 Class Name
The ClassName function returns handles to all attribute definitions for the class specified by the
<class handle> argument.

VTAPIRSLT ClassName (
VTSHND sessionHandle,
VTOHND classHandle,
LPVTRSTR className

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests

 CORE API Reference

.

31

submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

classHandle
Handle to the class that is the target of the request. Class handles can be obtained through any
of the following functions: Class, DatabaseClasses, or FacilityDatabaseClasses.

claseName
The <class name> argument is a pointer to an address to which the class name is assigned.
The function allocates memory for the name of the class and returns the address to the caller
via the <class name>pointer.

Return Values
If the function succeeds the return value is zero, and the <class name> pointer contains the
address of the class name. A non-zero return code is an indication that the call failed. To get
extended error information, call GetLastSessionError with the <session handle>. The
following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_CLASS_HANDLE The <class handle> argument is undefined or is NULL.

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target element.

• DEFUNCT_OPERAND The class specified by the <class handle> argument has been deleted.

Remarks
The function fails if either the <session handle> or the <class handle> is invalid. The handles
are allocated from the heap. The client application can release the handles with a call to
ReleaseHandles when the handles are no longer needed.

6.5 Class Property
The ClassProperty function returns the handle to the property specified by the <property name>
of the class specified by the <class handle> argument.
VTAPIRSLT ClassProperty (

VTSHND sessionHandle,
VTOHND classHandle,
LPSTR propertyName,
CoreApiOperands *propertyHandle

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

 CORE API Reference

.

32

classHandle
Handle to the class that is the target of the request. Class handles can be obtained through any
of the following functions: Class, DatabaseClasses, or FacilityDatabaseClasses.

propertyName
 The name of the property for which the value is desired.
attributeHandles

A pointer to a CoreApiOperands structure containing an array of property handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <property handle> pointer.

Return Values
If the function succeeds the return value is zero, and the <property handles> pointer has the
address of the structure containing the relationship handles. A non-zero return code is an
indication that the function failed. To get extended error information, call GetLastSessionError
with the <session handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_CLASS_HANDLE The <class handle> argument is undefined or is NULL.

• UNDEFINED_ELEMENT There is no property defined by the name in the <property name> argument.

Remarks
The function fails if either the <session handle> or the <class handle> is invalid or the property
name is not defined for the specified class. The handles are allocated from the heap. The client
application can release the handles with a call to ReleaseHandles when the handles are no
longer needed.

6.6 Class Relations
The ClassRealtions function returns handles to all the relations of class specified by the <class
handle> argument.
VTAPIRSLT ClassRelations (

VTSHND sessionHandle,
VTOHND classHandle,
CoreApiOperands *relationHandles

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

 CORE API Reference

.

33

classHandle
Handle to the class that is the target of the request. Class handles can be obtained through any
of the following functions: Class, DatabaseClasses, or FacilityDatabaseClasses.

relationHandles
A pointer to a CoreApiOperands structure containing an array of relation handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <relation handles> pointer.

Return Values
If the function succeeds the return value is zero, and the <relation Handles> pointer has the
address of the structure containing the relationship handles. A non-zero return code is an
indication that the function failed. To get extended error information, call GetLastSessionError
with the <session handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_CLASS_HANDLE The <class handle> argument is undefined or is NULL.

Remarks
The function fails if either the <session handle> or the <class handle> is invalid. The handles
are allocated from the heap. The client application can release the handles with a call to
ReleaseHandles when the handles are no longer needed.
Class Target Classes

6.7 Class Target Classes
The ClassTargetClasses function returns handles to all classes defined in the CORE schema as
targets of the relation specified by the <relation handle> argument.
VTAPIRSLT ClassTargetClasses (

VTSHND sessionHandle,
VTOHND classHandle,
VTOHND relationHandle,
CoreApiOperands *classHandles

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

classHandle
Handle to the class that is the target of the request. Class handles can be obtained through any
of the following functions: Class, DatabaseClasses, or FacilityDatabaseClasses.

 CORE API Reference

.

34

relationHandle
 A valid relation of the class specified by the <class handle> argument.
classHandles

A pointer to a CoreApiOperands structure containing an array of class handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <class handles> pointer.

Return Values
If the function succeeds the return value is zero, and the <class handles> pointer has the address
of the structure containing the relationship handles. A non-zero return code is an indication that
the function failed. To get extended error information, call GetLastSessionError with the
<session handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_ELEMENT_HANDLE The <class handle> argument is undefined or is NULL.

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target class.

• DEFUNCT_OPERAND The class specified by the <class handle> argument has been deleted.

• UNDEFINED_ELEMENT There is no relation defined by the name in the <relation name> argument.

Remarks
The function fails if either the <session handle>, <class handle> or <relation handle> is
invalid. The handles are allocated from the heap. The client application can release the handles
with a call to ReleaseHandles when the handles are no longer needed.

 CORE API Reference

.

35

7. ELEMENT

7.1 Element Attribute Value
The ElementAttributeValue function returns handles to all attribute values for the attribute
specified by the <attribute name> argument, and are defined for the element specified by
<element handle>.
VTAPIRSLT ElementAttributeValue (

VTSHND sessionHandle,
VTOHND elementHandle,
LPSTR attributeName,
CoreApiOperands *attributeHandles

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

elementHandle
Handle to the element against which the function is executed. Element handles can be
obtained through a call to the Elements function.

attributeName
 The name of the attribute for which values are desired, e.g., “description.”
attributeHandles

A pointer to a CoreApiOperands structure containing an array of attribute handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <attribute handles> pointer.

Return Values
If the function succeeds, the return value is zero and the <attribute handles> pointer has the
address of the structure containing the attribute value handles. The result set of this function is
dependent on the type of the attribute. If the attribute is of type collection then the result set is a
collection; if the attribute type is text then the result is of type string. See the COREscript
Expression Language Reference Guide for additional information on other types of results. A
non-zero return code is an indication that the call failed. To get extended error information, call
GetLastSessionError with the <session handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_ELEMENT_HANDLE The <element handle> argument is undefined or is NULL.

 CORE API Reference

.

36

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target element.

• DEFUNCT_OPERAND The element specified by the <element handle> argument has been deleted.

• UNDEFINED_ELEMENT There is no attribute defined by the name in the <attribute name> argument.

Remarks
The function fails if either the <session handle> or the <element handle> is invalid. The handles
are allocated from the heap. The client can release that memory with a call to ReleaseHandles
when the handles are no longer needed.

7.2 Element Children
The ElementChildren function returns handles to all the elements that are targets of child-parent
relationships defined on the element specified by <element Handle>.
VTAPIRSLT ElementChildren (

VTSHND sessionHandle,
VTOHND elementHandle,
CoreApiOperands *childrenHandles

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

elementHandle
Handle to the element against which the function is executed. Element handles can be
obtained through a call to the Elements function.

childrenHandles
A pointer to a CoreApiOperands structure containing an array of element handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <children handles> pointer.

Return Values
If the function succeeds the return value is zero, and the <children handles> pointer has the
address of the structure containing the element handles. The returned children handles may not
all be of the same class as the element against which the call was issued. A non-zero return code
is an indication that the function failed. To get extended error information, call
GetLastSessionError with the <session handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_ELEMENT_HANDLE The <element handle> argument is undefined or is NULL.

 CORE API Reference

.

37

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target element.

• DEFUNCT_OPERAND The element specified by the <element handle> argument has been deleted.

Remarks
The function fails if either the <session handle> or the <element handle> is invalid. The handles
are allocated from the heap. The client application can release the handles with a call to
ReleaseHandles when the handles are no longer needed.

7.3 Element Class
The ElementClass function returns the handle to the (class) element definition for the element
specified by <element handle>.
VTAPIRSLT ElementClasss (

VTSHND sessionHandle,
VTOHND elementHandle,
CoreApiOperands *classHandle

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

elementHandle
Handle to the element against which the function is executed. Element handles can be
obtained through a call to the Elements function.

classHandle
A pointer to a CoreApiOperands structure containing an array of class handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <class handle> pointer.

Return Values
If the function succeeds the return value is zero, and the <class handle> pointer has the address
of the structure containing the class handle. Note that the function returns a single class handle
and that the CoreApiOperands will contain a single value in the handles array. A non-zero return
code is an indication that the call failed. To get extended error information, call
GetLastSessionError with the <session handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_ELEMENT_HANDLE The <element handle> argument is undefined or is NULL.

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target element.

 CORE API Reference

.

38

• DEFUNCT_OPERAND The element specified by the <element handle> argument has been deleted.

Remarks
The function fails if either the <session handle> or the <element handle> is invalid. The handles
are allocated from the heap. The client application can release the handles with a call to
ReleaseHandles when the handles are no longer needed.

7.4 Element Name
The ElementName function returns the name of the element specified by the <element handle>
argument.
VTAPIRSLT ElementName (

VTSHND sessionHandle,
VTOHND elementHandle,
LPVTRSTR elementName

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project; requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

elementHandle
Handle to the element against which the function is executed. Element handles can be
obtained through a call to the Elements function.

elementName
The <element name> argument is a pointer to an address to which the element name is
assigned. The function allocates memory for the name of the element and returns the address
to the caller via the <element name>pointer.

Return Values
If the function succeeds the return value is zero, and the <element name> pointer contains the
address of the element name. A non-zero return code is an indication that the call failed. To get
extended error information, call GetLastSessionError with the <session handle>. The
following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_ELEMENT_HANDLE The <element handle> argument is undefined or is NULL.

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target element.

• DEFUNCT_OPERAND The element specified by the <element handle> argument has been deleted.

 CORE API Reference

.

39

Remarks
The function fails if either the <session handle> or the <element handle> is invalid. The
memory for the element name is allocated from the heap. The client can release that memory
with a call to ReleaseHandles when the handles are no longer needed. If the client wishes to
perform the memory management then the client can call the related function GetEntityName
with a buffer large enough to accommodate the category element name.

7.5 Element Number
The ElementNumber function returns the hierarchical number of the element specified by the
<element handle> argument.
VTAPIRSLT ElementNumber (

VTSHND sessionHandle,
VTOHND elementHandle,
USHORT *hierarchyNumber

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

 elementHandle
 Handle to the element against which the function is executed. Element handles can be
obtained through a call to the Elements function.

hierarchyNumber
 The parameter to which the hierarchical element number is assigned.

Return Values
If the function succeeds the return value is zero, and the <hierarchy number>. A non-zero
return code is an indication that the call failed. To get extended error information, call
GetLastSessionError with the <session handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_ELEMENT_HANDLE The <element handle> argument is undefined or is NULL.

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target element.

• DEFUNCT_OPERAND The element specified by the <element handle> argument has been deleted.

Remarks
The function fails if either the <session handle> or the <element handle> is invalid.

 CORE API Reference

.

40

7.6 Element Parents
The ElementParents function returns handles to all the elements that are targets of child-parent
relationships defined on the element specified by <element handle>.
VTAPIRSLT ElementParents (

VTSHND sessionHandle,
VTOHND elementHandle,
CoreApiOperands *parentHandles

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

elementHandle
Handle to the element against which the function is executed. Element handles can be
obtained through a call to the Elements function.

parentHandles
A pointer to a CoreApiOperands structure containing an array of element handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <parent handles> pointer.

Return Values
If the function succeeds the return value is zero, and the <parent handles> pointer has the
address of the structure containing the parent handles. The returned parent handles may not all be
of the same class as the element against which the call was issued. A non-zero return code is an
indication that the function failed. To get extended error information, call GetLastSessionError
with the <session handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_ELEMENT_HANDLE The <element handle> argument is undefined or is NULL.

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target element.

• DEFUNCT_OPERAND The element specified by the <element handle> argument has been deleted.

Remarks
The function fails if either the <session handle> or the <element handle> is invalid. The handles
are allocated from the heap. The client application can release the handles with a call to
ReleaseHandles when the handles are no longer needed.

 CORE API Reference

.

41

7.7 Element Relationships
The ElementRealtionships function returns handles to all the relationships of the relation
specified by the <relation name> argument that have been defined for the element <element
handle>.
VTAPIRSLT ElementRelationships (

VTSHND sessionHandle,
VTOHND elementHandle,
LPSTR relationName,
CoreApiOperands *relationshipHandles

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

elementHandle
Handle to the element against which the function is executed. Element handles can be
obtained through a call to the Elements function.

relationName
 The name of a valid relation for the element specified by the <element handle> argument.
relationshipHandles

A pointer to a CoreApiOperands structure containing an array of relationship handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <relationship handles> pointer.

Return Values
If the function succeeds the return value is zero, and the <relationship handles> pointer has the
address of the structure containing the relationship handles. A non-zero return code is an
indication that the function failed. To get extended error information, call GetLastSessionError
with the <session handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_ELEMENT_HANDLE The <element handle> argument is undefined or is NULL.

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target element.

• DEFUNCT_OPERAND The element specified by the <element handle> argument has been deleted.

• UNDEFINED_ELEMENT There is no relation defined by the name in the <relation name> argument.

 CORE API Reference

.

42

Remarks
The function fails if either the <session handle> or the <element handle> is invalid. The handles
are allocated from the heap. The client application can release the handles with a call to
ReleaseHandles when the handles are no longer needed.

7.8 Element Relationships Target Class
The ElementRelationshipsTargetClass function returns handles to all the relationship objects
specified by the <relation name> that are defined for the element <element handle> as the source
and an element of the class specified by <target class handle>.
VTAPIRSLT ElementRelationshipsTargetClass (

VTSHND sessionHandle,
VTOHND elementHandle,
LPSTR relationName,
VTOHND targetClassHandle,
CoreApiOperands *relationshipHandles

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

elementHandle
Handle to the element against which the function is executed. Element handles can be
obtained through a call to the Elements function.

relationName
 The name of a valid relation for the element specified by the <element handle> argument.
targetClassHandle
 A valid target class defined for the relation specified by the <relation name> argument.
relationshipHandles

A pointer to a CoreApiOperands structure containing an array of relationship handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <relationship handles> pointer.

Return Values
If the function succeeds the return value is zero, and the <relationship handles> pointer has the
address of the structure containing the relationship handles. A non-zero return code is an
indication that the function failed. To get extended error information, call GetLastSessionError
with the <session handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

 CORE API Reference

.

43

• INVALID_ELEMENT_HANDLE The <element handle> argument is undefined or is NULL.

• INVALID_CLASS_HANDLE The <target class handle> argument is undefined or is NULL.

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target relationship.

• DEFUNCT_OPERAND The element specified by the <element handle> argument has been deleted.

• UNDEFINED_ELEMENT There is no relation defined by the name in the <relation name> argument.

Remarks
The function fails if either the <session handle> or the <element handle> is invalid. The handles
are allocated from the heap. The client application can release the handles with a call to
ReleaseHandles when the handles are no longer needed.

7.9 Elements
The Elements function returns handles to the elements specified by the <class handle>
argument.
VTAPIRSLT Elements (

VTSHND sessionHandle,
VTOHND classHandle,
CoreApiOperands *elementHandles

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

classHandle
Handle to the class that is the target of the request. Class handles can be obtained through any
of the following functions: Class, DatabaseClasses, or FacilityDatabaseClasses.

elementHandles
A pointer to a CoreApiOperands structure containing an array of element handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <element handles> pointer.

Return Values
If the function succeeds the return value is zero, and the <element handles> pointer has the
address of the structure containing the element handles. A non-zero return code is an indication

 CORE API Reference

.

44

that the function failed. To get extended error information, call GetLastSessionError with the
<session handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_CLASS_HANDLE The <class handle> argument is undefined or is NULL.

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target element.

Remarks
The function fails if either the <session handle> or the <class handle> is invalid. The handles
are allocated from the heap. The client application can release the handles with a call to
ReleaseHandles when the handles are no longer needed.

7.10 Element Targets
The ElementTargets function returns handles to all the elements that are targets of the
relationship specified by the <relation name> argument.
VTAPIRSLT ElementTargets (

VTSHND sessionHandle,
VTOHND elementHandle,
LPSTR relationName,
CoreApiOperands *elementHandles

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

elementHandle
Handle to the element against which the function is executed. Element handles can be
obtained through a call to the Elements function.

relationName
 The name of a valid relation for the element specified by the <element handle> argument.
elementHandles

A pointer to a CoreApiOperands structure containing an array of element handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <element handles> pointer.

Return Values
If the function succeeds the return value is zero, and the <element handles> pointer has the
address of the structure containing the element handles. A non-zero return code is an indication

 CORE API Reference

.

45

that the function failed. To get extended error information, call GetLastSessionError with the
<session handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_ELEMENT_HANDLE The <element handle> argument is undefined or is NULL.

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target element.

• DEFUNCT_OPERAND The element specified by the <element handle> argument has been deleted.

• UNDEFINED_ELEMENT There is no relation defined by the name in the <relation name> argument.

Remarks
The function fails if either the <session handle> or the <element handle> is invalid. The handles
are allocated from the heap. The client application can release the handles with a call to
ReleaseHandles when the handles are no longer needed.

7.11 Element Targets Target Class
The ElementTargetsTargetClass function returns handles to all the elements that are of the
class specified by the <target class handle> and are the targets of the relationship specified by
the <relation name> argument.
VTAPIRSLT ElementTargetsTargetClass (

VTSHND sessionHandle,
VTOHND elementHandle,
LPSTR relationName,
VTOHND targetClassHandle,
CoreApiOperands *elementHandles

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

elementHandle
Handle to the element against which the function is executed. Element handles can be
obtained through a call to the Elements function.

relationName
 The name of a valid relation for the element specified by the <element handle> argument.
targetClassHandle
 A valid target class defined for the relation specified by the <relation name> argument.
elementHandles

A pointer to a CoreApiOperands structure containing an array of element handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to

 CORE API Reference

.

46

accommodate the handles returned from the server and assign the base address of the
memory to the <element handles> pointer.

Return Values
If the function succeeds the return value is zero, and the <element handles> pointer has the
address of the structure containing the element handles. A non-zero return code is an indication
that the function failed. To get extended error information, call GetLastSessionError with the
<session handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_ELEMENT_HANDLE The <element handle> argument is undefined or is NULL.

• INVALID_CLASS_HANDLE The <target class handle> argument is undefined or is NULL.

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target element.

• DEFUNCT_OPERAND The element specified by the <element handle> argument has been deleted.

• UNDEFINED_ELEMENT There is no relation defined by the name in the <relation name> argument.

Remarks
The function fails if either the <session handle> or the <element handle> is invalid. The handles
are allocated from the heap. The client application can release the handles with a call to
ReleaseHandles when the handles are no longer needed.

7.12 Element Targets Target Classes
The ElementTargetsTargetClasses function returns handles to all the elements that are of the
class specified by the <target class handles> and are the targets of the relationship specified by
the <relation name> argument.
VTAPIRSLT ElementTargetsTargetClass (

VTSHND sessionHandle,
VTOHND elementHandle,
LPSTR relationName,
CoreApiOperands *targetClassHandles,
CoreApiOperands *elementHandles

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

elementHandle
Handle to the element against which the function is executed. Element handles can be
obtained through a call to the Elements function.

relationName

 CORE API Reference

.

47

 The name of a valid relation for the element specified by the <element handle> argument.
targetClassHandles
 An array of valid target class handles defined for the relation specified by the <relation
name> argument.
elementHandles

A pointer to a CoreApiOperands structure containing an array of element handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <element handles> pointer.

Return Values
If the function succeeds the return value is zero, and the <element handles> pointer has the
address of the structure containing the element handles. A non-zero return code is an indication
that the function failed. To get extended error information, call GetLastSessionError with the
<session handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_ELEMENT_HANDLE The <element handle> argument is undefined or is NULL.

• INVALID_CLASS_HANDLE The <target class handle> argument is undefined or is NULL.

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target element.

• DEFUNCT_OPERAND The element specified by the <element handle> argument has been deleted.

• UNDEFINED_ELEMENT There is no relation defined by the name in the <relation name> argument.

Remarks
The function fails if either the <session handle> or the <element handle> is invalid. The handles
are allocated from the heap. The client application can release the handles with a call to
ReleaseHandles when the handles are no longer needed.

7.13 Relationships
The Relationships function returns handles to all the relationships in the CORE database that are
of the relation specified by the <relation name> argument and have the element <element
handle> as their source.
VTAPIRSLT Relationships (

VTSHND sessionHandle,
VTOHND elementHandle,
LPSTR relationName,
CoreApiOperands *relationshipHandles

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent

 CORE API Reference

.

48

function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

elementHandle
Handle to the element against which the function is executed. Element handles can be
obtained through a call to the Elements function.

relationName
 The name of the relation for which a value is desired.
relationshipHandles

A pointer to a CoreApiOperands structure containing an array of relationship handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <relationship handles> pointer.

Return Values
If the function succeeds the return value is zero, and the <relationship handles> pointer has the
address of the structure containing the property handle. A non-zero return code is an indication
that the function failed. To get extended error information, call GetLastSessionError with the
<session handle>.
Remarks
The function fails if either the <session handle> or the <element handle> is invalid or the
relation name is not defined for the specified element. The handles are allocated from the heap.
The client application can release the handles with a call to ReleaseHandles when the handles
are no longer needed. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_ELEMENT_HANDLE The <element handle> argument is undefined or is NULL.

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target element.

• DEFUNCT_OPERAND The element specified by the <element handle> argument has been deleted.

• UNDEFINED_ELEMENT There is no relation defined by the name in the <relation name> argument.

 CORE API Reference

.

49

8. FACILITY

8.1 Facilities
The Facilities function returns handles to all the facilities in the CORE schema.
VTAPIRSLT Facilities (

VTSHND sessionHandle,
CoreApiOperands *facilityHandles

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

facilityHandles
A pointer to a CoreApiOperands structure containing an array of facility handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <facility handles> pointer.

Return Values
If the function succeeds the return value is zero, and the <facility handles> pointer has the
address of the structure containing the facility handles. A non-zero return code is an indication
that the function failed. To get extended error information, call GetLastSessionError with the
<session handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

Remarks
The function fails if either the <session handle> is invalid. The handles are allocated from the
heap. The client application can release the handles with a call to ReleaseHandles when the
handles are no longer needed.

8.2 Facility Database Classes
The FacilityDatabaseClasses function returns handles to all the classes in the specified facility.
VTAPIRSLT FacilityDatabaseClasses (

VTSHND sessionHandle,
VTOHND facilityHandle,
CoreApiOperands *classHandles

);

 CORE API Reference

.

50

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

facilityHandle
Handle to a facility in the CORE schema against which function calls are issued. Facility
handles can be obtained through a call the Facilities function.

classHandles
A pointer to a CoreApiOperands structure containing an array of class handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <class handles> pointer.

Return Values
If the function succeeds the return value is zero, and the <class handles> pointer has the address
of the structure containing the class handles. A non-zero return code is an indication that the
function failed. To get extended error information, call GetLastSessionError with the <session
handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_FACILITY_HANDLE The <facility handle> argument is undefined or is NULL.

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target element.

Remarks
The function fails if either the <session handle> is invalid. The handles are allocated from the
heap. The client application can release the handles with a call to ReleaseHandles when the
handles are no longer needed.

8.3 Facility Name
The FacilityName function returns the name of the category element specified by the <facility
handle> argument.
VTAPIRSLT FacilityName (

VTSHND sessionHandle,
VTOHND facilityHandle,
LPVTRSTR facilityName

);

Parameters
sessionHandle

 CORE API Reference

.

51

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

facilityHandle
Handle to a facility in the CORE schema against which function calls are issued. Facility
handles can be obtained through a call the Facilities function.

facilityName
The <facility name> argument is a pointer to an address to which the facility name is
assigned. The function allocates memory for the name of the element and returns the address
to the caller via the <facility name>pointer.

Return Values
If the function succeeds the return value is zero, and the <facility name> pointer contains the
address of the facility name. A non-zero return code is an indication that the function failed. To
get extended error information, call GetLastSessionError with the <session handle>. The
following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_FACILITY_HANDLE The <facility handle> argument is undefined or is NULL.

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target facility.

• DEFUNCT_OPERAND The element specified by the <facility handle> argument has been deleted.

Remarks
The function fails if either the <session handle> or the <facility handle> is invalid. The memory
for the element name is allocated from the heap. The client can release that memory with a call
to ReleaseHandles when the handles are no longer needed. If the client wishes to perform the
memory management then the client can call the related function GetEntityName with a buffer
large enough to accommodate the category element name.

8.4 FacilityProperty
The FacilityProperty function returns a collection of property handles for the facility specified
by specified by the <facility handle> and <propertyName> argument.
VTAPIRSLT FacilityProperty (

VTSHND sessionHandle,
VTOHND facilityHandle,
LPSTR propertyName,

CoreApiOperands *propertyHandles
);

Parameters
sessionHandle

 CORE API Reference

.

52

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

facilityHandle
Handle to a facility in the CORE schema against which function calls are issued. Facility
handles can be obtained through a call the Facilities function.

propertyName
The <property name> argument is the name of the property.

propertyHandles
A pointer to a CoreApiOperands structure containing an array of property handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <property handles> pointer.

Return Values
If the function succeeds the return value is zero, and the <property handles> pointer contains the
address of the properties. A non-zero return code is an indication that the function failed. To get
extended error information, call GetLastSessionError with the <session handle>. The
following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_FACILITY_HANDLE The <facility handle> argument is undefined or is NULL.

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target facility.

• DEFUNCT_OPERAND The element specified by the <facility handle> argument has been deleted.

Remarks
The function fails if either the <session handle> or the <facility handle> is invalid. The memory
for the element name is allocated from the heap. The client can release that memory with a call
to ReleaseHandles when the handles are no longer needed. If the client wishes to perform the
memory management then the client can call the related function GetEntityName with a buffer
large enough to accommodate the category element name.

8.5 Facility Schema Classes
The FacilitySchemaClasses function returns handles to all abstract classes defined in the CORE
schema as belonging to the facility specified by the <facility handle> argument.
VTAPIRSLT FacilitySchemaClasses (

VTSHND sessionHandle,
VTOHND facilityHandle,
CoreApiOperands *classHandles

);

 CORE API Reference

.

53

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

facilityHandle
Handle to a facility in the CORE schema against which function calls are issued. Facility
handles can be obtained through a call the Facilities function.

classHandles
A pointer to a CoreApiOperands structure containing an array of class handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <class handles> pointer.

Return Values
If the function succeeds the return value is zero, and the <class handles> pointer has the address
of the structure containing the facility handles. A non-zero return code is an indication that the
function failed. To get extended error information, call GetLastSessionError with the <session
handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_FACILITY_HANDLE The <facility handle> argument is undefined or is NULL.

Remarks
The function fails if either the <session handle> is invalid. The handles are allocated from the
heap. The client application can release the handles with a call to ReleaseHandles when the
handles are no longer needed.

 CORE API Reference

.

54

9. RELATION

9.1 Relations
The Relations function returns handles to all relations in the CORE schema.
VTAPIRSLT Relations (

VTSHND sessionHandle,
CoreApiOperands *relationHandles

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

relationHandles
A pointer to a CoreApiOperands structure containing an array of relation handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <relation handles> pointer.

Return Values
If the function succeeds the return value is zero, and the <relation handles> pointer has the
address of the structure containing the facility handles. A non-zero return code is an indication
that the function failed. To get extended error information, call GetLastSessionError with the
<session handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

Remarks
The function fails if either the <session handle> is invalid. The handles are allocated from the
heap. The client application can release the handles with a call to ReleaseHandles when the
handles are no longer needed.

9.2 Relation Attributes
The RelationAttributes function returns handles to all attribute definitions of the relation
specified by the <relation handle> argument.
VTAPIRSLT RelationAttributes (

VTSHND sessionHandle,
VTOHND relationHandle,
CoreApiOperands *attributeHandles

);

 CORE API Reference

.

55

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

relationHandle
A handle to a relation in the CORE schema for which an attribute definition is desired.
Relation handles can be obtained through a call to the Relations function.

attributeHandles
A pointer to a CoreApiOperands structure containing an array of attribute handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <attribute handles> pointer.

Return Values
If the function succeeds the return value is zero, and the <attribute handles> pointer has the
address of the structure containing the attribute handles. A non-zero return code is an indication
that the function failed. To get extended error information, call GetLastSessionError with the
<session handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_RELATION_HANDLE The <relation handle> argument is undefined or is NULL.

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target element.

Remarks
The function fails if either the <session handle> or the <class handle> is invalid. The handles
are allocated from the heap. The client application can release the handles with a call to
ReleaseHandles when the handles are no longer needed.

9.3 RelationName
The RelationName function returns the name of the relation specified by the <relation handle>
argument.
VTAPIRSLT RelationName (

VTSHND sessionHandle,
VTOHND relationHandle,
LPVTRSTR relationName

);

Parameters
sessionHandle

 CORE API Reference

.

56

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

relationHandle
Handle to the relation whose name is desired.

relationName
The <relation name> argument is a pointer to an address to which the relation name is
assigned. The function allocates memory for the name of the relation and returns the address
to the caller via the <relation name>pointer.

Return Values
If the function succeeds the return value is zero, and the <relation name> pointer contains the
address of the relation name. A non-zero return code is an indication that the function failed. To
get extended error information, call GetLastSessionError with the <session handle>. The
following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_RELATION_HANDLE The <relation handle> argument is undefined or is NULL.

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target facility.

• DEFUNCT_OPERAND The element specified by the <relation handle> argument has been deleted.

Remarks
The function fails if either the <session handle> or the <relation handle> is invalid. The
memory for the relation name is allocated from the heap. The client can release that memory
with a call to ReleaseHandles when the handles are no longer needed. If the client wishes to
perform the memory management then the client can call the related function GetEntityName
with a buffer large enough to accommodate the relation name.

9.4 Relation Property
The RelationProperty function returns the handle to the property specified by the <property
name> for the relation specified by the <relation handle> argument.
VTAPIRSLT RelationProperty (

VTSHND sessionHandle,
VTOHND relationHandle,
LPSTR propertyName,
CoreApiOperands *propertyHandle

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session

 CORE API Reference

.

57

handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

relationHandle
A handle to a relation in the CORE schema for which an attribute definition is desired.
Relation handles can be obtained through a call to the Relations function.

propertyName
 The name of the property for which a value is desired.
propertyHandles

A pointer to a CoreApiOperands structure containing an array of property handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <property handle> pointer.

Return Values
If the function succeeds the return value is zero, and the <property handle> pointer has the
address of the structure containing the property handle. A non-zero return code is an indication
that the function failed. To get extended error information, call GetLastSessionError with the
<session handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_RELATION_HANDLE The <relation handle> argument is undefined or is NULL.

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target property.

• DEFUNCT_OPERAND The element specified by the <element handle> argument has been deleted.

• UNDEFINED_ELEMENT There is no property defined by the name in the <property name> argument.

Remarks
The function fails if either the <session handle> or the <relation handle> is invalid or the
property name is not defined for the specified class. The handles are allocated from the heap.
The client application can release the handles with a call to ReleaseHandles when the handles
are no longer needed.

 CORE API Reference

.

58

10. RELATIONSHIP

10.1 Complement Relative To
The ComplementRelativeTo function returns the handle to the complement relation definition
for the relationship specified by the <relationship handle> where <element handle> is the subject
element.
VTAPIRSLT ComplementRelativeTo (

VTSHND sessionHandle,
VTOHND relationshipHandle,
VTOHND elementHandle,
CoreApiOperands *relationHandle

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

relationshipHandle
Handle to the relationship definition for which the complement relative is desired. A
relationship handle can be obtained through a call to the Relationships function with a
relationship name argument.

elementHandle
Handle to the element against which the function is executed. Element handles can be
obtained through a call to the Elements function.

relationHandle
A pointer to a CoreApiOperands structure containing an array of relation handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <relation handle> pointer.

Return Values
If the function succeeds the return value is zero, and the <relation handle> pointer has the
address of the structure containing the property handle. A non-zero return code is an indication
that the function failed. To get extended error information, call GetLastSessionError with the
<session handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_RELATIONSHIP_HANDLE The <relationship handle> argument is undefined or is NULL.

• INVALID_ELEMENT_HANDLE The <element handle> argument is undefined or is NULL.

 CORE API Reference

.

59

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target element.

• DEFUNCT_OPERAND The element specified by the <element handle> argument has been deleted.

Remarks
The function fails if either the <session handle>, <relationship handle>, or the <element
handle> is invalid. The handles are allocated from the heap. The client application can release
the handles with a call to ReleaseHandles when the handles are no longer needed.

10.2 Definition Relative To
The DefinitionRelativeTo function returns the handle to the relation definition for the
relationship specified by the <relationship handle> having the direction specified by the
<element handle> argument.
VTAPIRSLT DefinitionRelativeTo (

VTSHND sessionHandle,
VTOHND relationshipHandle,
VTOHND elementHandle,
CoreApiOperands *relationHandle

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

relationshipHandle
Handle to the relationship definition for which the definition relative is desired. A
relationship handle can be obtained through a call to the Relationships function with a
relationship name argument.

elementHandle
Handle to the element against which the function is executed. Element handles can be
obtained through a call to the Elements function.

relationHandle
A pointer to a CoreApiOperands structure containing an array of relation handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <relation handle> pointer.

Return Values
If the function succeeds the return value is zero, and the <relation handle> pointer has the
address of the structure containing the property handle. A non-zero return code is an indication

 CORE API Reference

.

60

that the function failed. To get extended error information, call GetLastSessionError with the
<session handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_RELATIONSHIP_HANDLE The <relationship handle> argument is undefined or is NULL.

• INVALID_ELEMENT_HANDLE The <element handle> argument is undefined or is NULL.

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target element.

• DEFUNCT_OPERAND The element specified by the <element handle> argument has been deleted.

Remarks
The function fails if either the <session handle>, <relationship handle>, or the <element
handle> is invalid. The handles are allocated from the heap. The client application can release
the handles with a call to ReleaseHandles when the handles are no longer needed.

10.3 Relationship Attribute
The RelationshipAttribute function returns the attribute handles for the relationship specified
by the <relationship handle> and having the name specified by the <attribute Name> argument.
VTAPIRSLT RelationshipAttribute (

VTSHND sessionHandle,
VTOHND relationshipHandle,
LPSTR attributeName,
CoreApiOperands *attributeHandles

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

relationshipHandle
Handle to the relationship definition for which the attribute is desired. A relationship handle
can be obtained through a call to the Relationships function with a relationship name
argument.

attributeName
The name of the attribute for which the relationship value is desired..

attributeHandles
A pointer to a CoreApiOperands structure containing an array of attribute handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <attribute handles> pointer.

 CORE API Reference

.

61

Return Values
If the function succeeds the return value is zero, and the <attribute Handles> pointer has the
address of the structure containing the relationship handles. A non-zero return code is an
indication that the function failed. To get extended error information, call GetLastSessionError
with the <session handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_RELATIONSHIP_HANDLE The <relationship handle> argument is undefined or is NULL.

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target element.

• DEFUNCT_OPERAND The relationship specified by the <relationship handle> argument has been
deleted.

Remarks
The function fails if either the <session handle> or the <relationship handle> is invalid. The
handles are allocated from the heap. The client application can release the handles with a call to
ReleaseHandles when the handles are no longer needed.

10.4 Traverse
The Traverse function returns the handle to the destination element of a relationship given the
source element handle and the relationship handle. The notion of source and destination in this
context is arbitrary. Either element of a relationship can be the source or destination. The idea
here is that given a relationship and one element of that relationship, traverse will return the
other element.
VTAPIRSLT Traverse (

VTSHND sessionHandle,
VTOHND relationshipHandle,
VTOHND sourceElementHandle,
CoreApiOperands *targetElementHandle

);

Parameters
sessionHandle

Handle to the server session that maintains resources for the client application. Upon a
successful login, the server creates a session for the client application and returns the session
handle to the client application. This session will be the context in which all-subsequent
function calls are executed. For example, a session maintains an active project and requests
submitted to the server are executed against this project. The API supports multiple sessions
within a client process and the <session handle> provides the facility to select the context in
which function calls are executed.

relationshipHandle
Handle to the relationship definition. A relationship handle can be obtained through a call to
the Relationships function with a relationship name argument.

sourceElementHandle
Handle to the class that is the target of the request.

targetElementHandle

 CORE API Reference

.

62

A pointer to a CoreApiOperands structure containing an array of element handles and the
number of handles contained in the array. The client application creates a CoreApiOperands
structure and passes a reference in the function call. The function will allocate memory to
accommodate the handles returned from the server and assign the base address of the
memory to the <target element handle> pointer.

Return Values
If the function succeeds the return value is zero, and the <target element handle> pointer has the
address of the structure containing the element handle. A non-zero return code is an indication
that the function failed. To get extended error information, call GetLastSessionError with the
<session handle>. The following errors apply to this function:

• INVALID_SESSION_HANDLE The <session handle> specified does not map to a valid session.

• INVALID_RELATIONSHIP_HANDLE The <relationship handle> argument is undefined or is NULL.

• INVALID_ELEMENT_HANDLE The <element handle> argument is undefined or is NULL.

• INSUFFICIENT_PRIVILEGE The user does not have read permission on a target element.

• DEFUNCT_OPERAND The element specified by the <element handle> argument has been deleted.

Remarks
The function fails if the <session handle>, the <relationship handle>, or the <source element handle> is
invalid. The handles are allocated from the heap. The client application can release the handles with a
call to ReleaseHandles when the handles are no longer needed.

	INTRODUCTION
	Functional Overview
	API Server
	Server Settings
	API Library

	APPLICATION
	CORE API Operands Structure

	SESSION MANAGEMENT
	Login
	Logout
	Get Entity Name
	Get Handle At Index
	Get Value at Index
	Get Handles
	Set Text Return Format
	Get Last API Error
	Get Last Session Error
	Release Handles
	Release Operand Named

	PROJECT MANAGEMENT
	Project Name
	Projects
	Select Active Project
	Project RTF Header
	Database Classes
	Schema Classes

	CATEGORY/FOLDER
	All Category Elements
	All Parent Categories
	All Subcategories
	Category Elements
	Category Name
	Number of Local Category Elements
	Category Path Name
	Root Category
	Subcategories
	Total Category Elements

	CLASS
	Class
	Attribute Definition Property
	Class Attributes
	Class Name
	Class Property
	Class Relations
	Class Target Classes

	ELEMENT
	Element Attribute Value
	Element Children
	Element Class
	Element Name
	Element Number
	Element Parents
	Element Relationships
	Element Relationships Target Class
	Elements
	Element Targets
	Element Targets Target Class
	Element Targets Target Classes
	Relationships

	FACILITY
	Facilities
	Facility Database Classes
	Facility Name
	FacilityProperty
	Facility Schema Classes

	RELATION
	Relations
	Relation Attributes
	RelationName
	Relation Property

	RELATIONSHIP
	Complement Relative To
	Definition Relative To
	Relationship Attribute
	Traverse

